
Winter 2023

CS45, Lecture 15
VMs & Containers

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

1



Computers Within Computers

2



● Have a basic conceptual understanding of VMs and their use cases
● Have a basic conceptual understanding of containerized applications 

and their use cases
● Know the difference between VMs and containers
● Have concrete experience using a VM locally (UTM/VirtualBox)

○ Spin up an Ubuntu (arm64/amd64) image locally
● Have concrete experience using docker locally

○ Deploy a pre-built container locally and expose a port

Learning Goals

3



Isolation & Testing (without extra hardware)

Computers Within Computers

4



Isolation & Testing (without extra hardware)

Virtual Machines allow you to emulate an entirely separate system 
within an existing system.

Computers Within Computers

5



Isolation & Testing (without extra hardware)

Virtual Machines allow you to emulate an entirely separate system 
within an existing system.

The application that oversees running VMs is called a hypervisor (or an 
emulator, depending on the mechanism it uses).

Computers Within Computers

6



Isolation & Testing (without extra hardware)

Virtual Machines allow you to emulate an entirely separate system 
within an existing system.

The application that oversees running VMs is called a hypervisor.

The computer running the hypervisor is called the host. The computer 
inside the VM is called the guest.

Computers Within Computers

7



Isolation & Testing (without extra hardware)

Virtual Machines allow you to emulate an entirely separate system 
within an existing system.

The application that oversees running VMs is called a hypervisor.

The computer running the hypervisor is called the host. The computer 
inside the VM is called the guest.

But… why?

Computers Within Computers

8



● Isolation & Sandboxing
○ Running untrusted (or dangerous) code
○ Allowing untrusted users access to an isolated environment

● Resource Allocation
○ Limit the maximum amount of resources an application or user may use
○ You might rent only part of the compute power available to you

● System Management
○ It is very easy to back up and restore an entire VM; shut it down, restart it, etc, without losing access to the host 

computer.
● Cross-platform testing

○ Test your apps on other operating systems without dedicating entire computers to them, or needing to reinstall/nuke a 
computer you’re already using.

● Prototyping
○ Virtualize an entire network with multiple VMs and emulated routers/switches/etc to prototype an entire network! (GNS3)

● Emulation
○ Emulate entirely different CPU architectures– slower, but allows for an incredibly diverse range of applications (including 

legacy applications) to run on your computer. (For example, video games on very old consoles!)
● Just for fun

○ Ever wanted to try out a Linux distribution without changing your whole computer to Linux? Now you can!

Use case for VMs

9



● Emulation involves recreating and modelling fully different computer 
architectures– basically mimicking hardware.
○ This is necessary when the operating system or software you’re trying to 

run are written for a different class of hardware than the host machine.

● Meanwhile, virtualization works when the OS or software you’re trying to 
run are written for the same class of hardware as the host machine.
○ Virtualization means “making one thing look or act like multiple things.”
○ In this case, it means your computer hardware!
○ Virtualization makes use of your computer hardware directly, and is 

therefore faster than emulation. Usually by a lot.

Emulation vs Virtualization?

10



● Emulation involves recreating and modelling fully different computer 
architectures– basically mimicking hardware.
○ This is necessary when the operating system or software you’re trying to 

run are written for a different class of hardware than the host machine.

● Meanwhile, virtualization works when the OS or software you’re trying to 
run are written for the same class of hardware as the host machine.
○ Virtualization means “making one thing look or act like multiple things.”
○ In this case, it means your computer hardware!
○ Virtualization makes use of your computer hardware directly, and is 

therefore faster than emulation. Usually by a lot.

Emulation vs Virtualization?

11



When we’re running a virtual machine, one of the key guarantees is that the 
guest cannot (without permission) access or affect the host.

● This allows us to try things (like rm -rf /) without worrying about 
destroying our host computer.

● Used for security research, etc.

12

Security concerns w/ virtualization



In order to provide virtual machines with complete CPU access but also 
ensure security of the host system, CPU manufacturers have extensions 
(special instructions!) to make it faster/easier to use Virtual Machines

● Intel VT-x
● AMD-V

13

Virtualization is supported by hardware



Okay, so CPUs have extensions for virtualization; do hypervisors need to do 
anything else interesting? Yes!

● There’s more to provide to the guest than just cpu & memory:
○ network access? → Virtual Networks
○ hard drive space? → Virtual Hard Drives
○ CD-ROM access (yes still!) → Disk Images

14

The role of hypervisors



Two types of hypervisors: bare metal (type 1) and hosted (type 2).

● Bare Metal hypervisors is when the hypervisor is the host.
○ This means the hypervisor is the “operating system.”

● Hosted hypervisors are programs that run on a host operating system.
○ We’re using type 2 hypervisors when we use UTM and VirtualBox

15

Bare Metal vs Hosted Hypervisors



Bare Metal Hypervisors

● VMWare ESXi
● Hyper-V
● Proxmox
● Xen

Hosted Hypervisors

● VirtualBox
● VMWare Workstation
● UTM (uses qemu under the hood)
● qemu (also supports emulation)
● Hyper-V
● Parallels

16

Hypervisors



We’re going to run a version of Ubuntu Linux on your computer!

17

Demo: Run Ubuntu Desktop



● Light(-er) weight
○ Allows them to be easily distributed
○ Rather than virtualizing the entire OS, it continues to use the host’s 

kernel/operating system as a “base” to service whatever is running within 
the container.

● Faster than VMs (usually)
○ Can also use an emulated system if necessary → runs within a VM

● Designed for ephemerality
○ Containers are “disposable” – any long-term data should be stored in 

separate persistent “volumes”

18

Containers



You can take an application and wrap it in a container to ensure a consistent 
running environment.

● You can define the operating system it expects to use (but not the kernel)
● You can define the CPU architecture the program expects (and if the CPU 

architecture differs from the host, it will have to run within a virtual machine)
● You can define dependencies and other programs that the application 

expects to be installed
● You can define the “hard drive” layout the program expects
● All this, and the application gets a level of isolation from other applications on 

the system.

19

Containerization



docker is one of the most popular tools to create and manage containers. 
Here’s some useful-to-know terms:

● Containers are an ephemeral object representing a copy of a program, 
based on an Image

● Images are built from Dockerfiles, and represent a frozen copy of an 
application and everything needed to run it

● Dockerfiles are special scripts that are used to build images, including:
○ Instructions on adding files (e.g. program files) from your local system
○ Instructions on adding dependencies

● Volumes store persistent data even past the lifetime of a container.

20

docker



docker is one of the most popular tools to create and manage containers. 
Here’s some useful-to-know terms:

● Containers are like the downloaded application.
● Images are like the .zip, .msi, or .dmg that you download from the 

website
● Dockerfiles are like scripts that create the .zip/.msi/.dmg
● Volumes are like the places on your computer where your applications 

store data

21

docker



Let’s run a basic ubuntu system using Docker!

22

Demo: run Ubuntu using docker



Let’s run a basic ubuntu system using Docker!

docker run -it ubuntu:latest bash

23

Demo: run Ubuntu using docker



Let’s run a basic ubuntu system using Docker!

docker run -it ubuntu:latest bash

run a new container based on an image

24

Demo: run Ubuntu using docker



Let’s run a basic ubuntu system using Docker!

docker run -it ubuntu:latest bash

Keep STDIN open (allows us to write things into the container)

25

Demo: run Ubuntu using docker



Let’s run a basic ubuntu system using Docker!

docker run -it ubuntu:latest bash

Allocate a TTY to the container (allows the container to receive things we 
write)

26

Demo: run Ubuntu using docker



Let’s run a basic ubuntu system using Docker!

docker run -it ubuntu:latest bash

All together: “Run interactively”

27

Demo: run Ubuntu using docker



Let’s run a basic ubuntu system using Docker!

docker run -it ubuntu:latest bash

Specifies the image to run (the latest version of ubuntu)

28

Demo: run Ubuntu using docker



Let’s run a basic ubuntu system using Docker!

docker run -it ubuntu:latest bash

Specifies which command to run within the image (bash)

29

Demo: run Ubuntu using docker



Dockerfiles, which are basically always called Dockerfile, look like this:

30

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



FROM specifies the base of the image you’re building.

31

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



In this case, we’re basing our image off the latest version of ubuntu.

32

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



ubuntu is the image name. 

33

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



ubuntu is the image name. latest is the tag.

34

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



RUN commands will run the given command inside a shell.

35

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



These commands form intermediate containers; each command builds off 
of the previous.

36

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



These commands form intermediate containers; each command builds off 
of the previous.

37

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



The commands below install build tools like make.

38

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



WORKDIR specifies a new working directory from that point onwards.
(it’s like a cd that sticks)

39

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]



40

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]

ADD will copy files from your local directory (relative to where the Dockerfile 
is located) into the image.



41

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]

We can run make at this point because we installed it earlier.



42

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]

ENTRYPOINT describes what what should happen when we run the image.



43

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]

ENTRYPOINT describes what what should happen when we run the image.
In this case, it says we should run the ./calculator program, which we just 
built



44

Dockerfiles

FROM ubuntu:latest

RUN apt-get -y update
RUN apt-get -y upgrade
RUN apt-get install -y build-essential
WORKDIR /calculator_app
ADD ./calculator/ ./
RUN make clean; make
ENTRYPOINT ["./calculator"]

At the end, Docker will “freeze” all the intermediate containers all together 
into an image. Each command forms a layer of that image.



Let’s create a Calculator Dockerfile together!

45

Demo: Create a docker container



When you have a lot of containers in a system, you may want to put another 
meta-system to reason about and manage your individual containers for you.

This is called container orchestration

46

Orchestration



Kubernetes (also known as k8s) One of the most popular container 
orchestration tools.

● Highly integrated with specific cloud environments
○ Can manage certain AWS resources, for instance

● High-level complicated management tasks
○ Load balancing
○ Dynamically allocating containers to available computers (nodes)

● High-overhead system
○ Useful if the advanced management tools are valuable and/or if you have a 

lot of compute power you’re managing.
○ Minimum: 3 to 5 separate computers all dedicated to Kubernetes

47

Kubernetes (k8s)



Let’s show off running a simple web server in Docker, then Kubernetes

48

Demo: Kubernetes



We’ll talk about this more on Wednesday, but:

● Most cloud providers will offer you a “VPS” (“virtual private server”) – this 
is basically just a VM they give you access to! (Our server is a VPS).

● Some will offer you an “app runner” or “Apps” or similar– usually this is 
them offering to run your container on their servers!

● Some will offer Kubernetes services: Kubernetes deployments are 
usually cloud-specific; so there will be special integration with a cloud 
provider’s offering of Kubernetes.

49

Deploying Your Apps



Questions?

50


