
CS 45, Lecture 3
Data Wrangling

Winter 2023 
Akshay Srivatsan, Ayelet Drazen, Jonathan Kula 

Administrivia

● Assignment 1 is live! It covers regular expressions and data wrangling. It
is due on Monday, January 23rd.

● Our autograder was incorrect for A1, Part 2, Question 2. This has been
fixed.

● Office hours are listed on the course website. Come if you need help or
want to chat!

What we know

In Lecture 1, we learned how to:

- What the shell is
- What the UNIX philosophy is
- How to run basic commands such as ls, cd, cat, man, wc
- How to pipe commands together using the | operator
- How to redirect output using < and >
- How to append to the end of a file using >>

What we will learn today

In today's lecture, we will learn how to combine these commands in powerful
ways:

- How to use shell commands to manipulate and analyze data
- How to write regular expressions
- How to run more complex shell commands such as grep, sort, uniq,

xargs

What is Data Wrangling?

Data Wrangling Definition

The basic idea of data wrangling is that you take some raw data and
convert or transform it into another form that is more useful.

Ideally, you do this in the most efficient way with the use of a tool 😁

More sources of data and larger amounts of data have made data
wrangling increasingly important.

Source: XKCD

Data Formats

Data wrangling techniques are typically dictated by the data format you are
using. Here are five common file formats for storing data:

- CSV
- XML
- HTML
- JSON
- TXT

Data Formats

A CSV file is a comma-separated values file where information is separated
by commas.

- CSV are plain text files

- Data can be saved in tabular format
(meaning a table of rows and
columns)

- CSV files are often used to analyze
data with spreadsheets

Data Formats

A XML file is an Extensible Markup Language (XML) file that is used to store
data in a hierarchical format.

- XML files were created for
storing documents in a way
that both humans and
machines could read.

- XML files consist of tags that
define the hierarchy within
the document.

Data Formats

An HTML file is an Hypertext Markup Language file that is used to store data
in a hierarchical format, specifically webpages.

- HTML files are similar to XML
files

- Key difference between the two
is that HTML files must use a
predefined set of tags to define
hierarchical structure

Data Formats

A JSON file is a JavaScript Object Notation file that stores structured data in
the form of JavaScript objects.

- JSON files are often used for
transmitting data in web
applications (e.g. sending
some data from the server to
the client)

Data Formats

A TXT file is a plaintext file that stores data in the form of lines.

- TXT files have no special
formatting.

Basic Data Wrangling: grep

We’ve already seen a basic form of data wrangling with the | operator.

ls ~/Documents | grep -i transcript

Basic Data Wrangling: grep

Another example: system logs!

Basic Data Wrangling: grep

Another example: system logs!

System logs keep a record of operating system events on a machine, thereby
producing a lot of data.

Basic Data Wrangling: grep

Another example: system logs!

System logs keep a record of operating system events on a machine, thereby
producing a lot of data.

log show | grep -i Chrome journalctl | grep -i Chrome

(macOS) (Linux)

wevutil gp Microsoft-Windows-Eventlog /ge:true | grep -i Chrome

(Windows)

For this next example, I will be using a system log on a CS45 honeypot. If you
want to follow along with the data, you can download the data using:

Basic Data Wrangling: grep

curl -Lo honeypot_log.txt

https://cs45.stanford.edu/res/lec3/honeypot_log.txt

Another useful command is the history command, which is used to view
previously executed commands:

Basic Data Wrangling: grep

adrazen@ayelet-computer ~ % history
1030 ls

1031 ssh adrazen@192.9.152.85 journalctl >

honeypot_log.txt

1032 cat honeypot_log.txt

1033 scp honeypot_log.txt

adrazen@myth.stanford.edu:~/cs45/root/WWW/lectures

We can even search for system log events on a remote server. Let’s look for
everything related to ssh on a CS45 honeypot:

Basic Data Wrangling: grep

ssh adrazen@192.9.152.85 journalctl | grep sshd

We can even search for system log events on a remote server. Let’s look for
everything related to ssh on a CS45 honeypot.

Let’s look for times when users were disconnected.

Basic Data Wrangling: grep

ssh adrazen@192.9.152.85 journalctl | grep sshd | grep
“Disconnected from”

We should make sure to avoid sending unnecessary data across the
machines. Let’s run the pipeline on the remote machine by adding quotes:

Basic Data Wrangling: grep

ssh adrazen@192.9.152.85 'journalctl | grep sshd | grep
"Disconnected from"'

Now maybe we are interested in extracting the usernames for the users who
were disconnected.

Basic Data Wrangling: sed

Let's say we are interested in extracting the usernames for the users who
were disconnected.

Basic Data Wrangling: sed

Now maybe we are interested in extracting the usernames for the users who
were disconnected.

We can use a tool called sed to help sift through our data.

sed is a stream editor that is built into Unix.

It can be used for searching a file, adding lines to a file, or substituting
text in a file.

Basic Data Wrangling: sed

Let's use sed for substitution.

Basic Data Wrangling: sed

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

REGEX is the regular
expression to search

for text to match

SUBSTITUTION is what we want to
changed the matched phrase to

Basic Data Wrangling: sed

Courses taken in AY21-22 will be counted towards your major.
You must take the course in AY21-22

Original File:

Basic Data Wrangling: sed

Courses taken in AY21-22 will be counted towards your major.
You must take the course in AY21-22

sed 's/AY21-22/AY22-23/' file.txt

Original File:

Command:

Text to
match

Replacement
text

Basic Data Wrangling: sed

Courses taken in AY21-22 will be counted towards your major.
You must take the course in AY21-22

sed 's/AY21-22/AY22-23/' file.txt

Courses taken in AY22-23 will be counted towards your major.
You must take the course in AY22-23

Original File:

 After sed:

Command:

Text to
match

Replacement
text

Let's say we interested in extracting the usernames for the users who were
disconnected.

Basic Data Wrangling: sed

Regular Expressions

What is a regular expression?

A regular expression (also called a regex) is a set of characters that
specifies a search pattern.

Most ASCII characters carry their normal meaning but some characters have
special matching behavior.

There is some variation between different implementations of regular
expressions.

Regular Expressions

First, there are groups of characters. These specify which characters we are
interested in:

Regular Expressions

First, there are groups of characters. These specify which characters we are
interested in:

 means any single character (except the newline character).

Regular Expressions

First, there are groups of characters. These specify which characters we are
interested in:

 means any single character (except the newline character)

 means any of the characters included inside the square brackets (in

this case a, b or c)

.

[abc]

Regular Expressions

First, there are groups of characters. These specify which characters we are
interested in:

 means any single character (except the newline character)

 means any of the characters included inside the square brackets (in

this case a, b or c)

 means any character in the range a-z

.

[abc]

[a-z]

Regular Expressions

First, there are groups of characters. These specify which characters we are
interested in:

 means any single character (except the newline character)

 means any of the characters included inside the square brackets (in

this case a, b or c)

 means any character in the range a-z

 means either a or b

.

[abc]

(a|b)

[a-z]

Regular Expressions

Next, we have quantifiers. These specify how many characters we are
interested in:

Regular Expressions

Next, we have quantifiers. These specify how many characters we are
interested in:

 means we want 0 or more characters of the specified kind*

Regular Expressions

Next, we have quantifiers. These specify how many characters we are
interested in:

 means we want 0 or more characters of the specified kind

 means we want 1 or more characters of the specified kind

*

+

Regular Expressions

Next, we have quantifiers. These specify how many characters we are
interested in:

 means we want 0 or more characters of the specified kind

 means we want 1 or more characters of the specified kind

 means we want exactly 0 or 1 characters of the specified kind

*

+

?

Regular Expressions

Next, we have quantifiers. These specify how many characters we are
interested in:

 means we want 0 or more characters of the specified kind

 means we want 1 or more characters of the specified kind

 means we want exactly 0 or 1 characters of the specified kind

 means we want exactly X characters of the specified kind

*

+

?

{X}

Regular Expressions

Finally, we have anchors. These specify specific starting or stopping
conditions we are interested in:

Regular Expressions

Finally, we have anchors. These specify specific starting or stopping
conditions we are interested in:

 specifies the start of the line^

Regular Expressions

Finally, we have anchors. These specify specific starting or stopping
conditions we are interested in:

 specifies the start of the line

 specifies the end of the line

^

$

Source: @garabatokid

RegEx Applications

Regular expressions are really useful in all kinds of applications!

You can use regular expressions inside of applications such as Excel and
Google Sheets that support data processing.

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

Which characters?

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

Any character A-Z, a-z,0-9, ., _, %, +, -Which characters?

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

Any character A-Z, a-z,0-9, ., _, %, +, -

[A-Za-z0-9._%+-]

Which characters?

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

Any character A-Z, a-z,0-9, ., _, %, +, -

[A-Za-z0-9._%+-]

Which characters?

How many of them?

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

Any character A-Z, a-z,0-9, ., _, %, +, -

[A-Za-z0-9._%+-]

Which characters?

As many as you want… (at least 1!)How many of them?

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

Any character A-Z, a-z,0-9, ., _, %, +, -

[A-Za-z0-9._%+-]

Which characters?

As many as you want… (at least 1!)

[A-Za-z0-9._%+-]+

How many of them?

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Which characters?

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z,0-9, ., -Which characters?

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z,0-9, ., -

[A-Za-z0-9.-]

Which characters?

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z,0-9, ., -

[A-Za-z0-9.-]

Which characters?

How many of them?

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z,0-9, ., -

[A-Za-z0-9.-]

Which characters?

As many as you want… (at least 1!)How many of them?

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z,0-9, ., -

[A-Za-z0-9.-]

Which characters?

As many as you want… (at least 1!)

[A-Za-z0-9.-]+

How many of them?

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Which characters?

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-zWhich characters?

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z

[A-Za-z]

Which characters?

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z

[A-Za-z]

Which characters?

How many of them?

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z

[A-Za-z]

Which characters?

At least 2How many of them?

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

Any character A-Z, a-z

[A-Za-z]

Which characters?

At least 2

[A-Za-z]{2,}

How many of them?

[A-Za-z0-9.-]+

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

[A-Za-z0-9.-]+ [A-Za-z]{2,}

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

[A-Za-z0-9.-]+ [A-Za-z]{2,}

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

[A-Za-z0-9.-]+ [A-Za-z]{2,}@ .

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

[A-Za-z0-9.-]+ [A-Za-z]{2,}@ \.

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+

adrazen@stanford.edu

[A-Za-z0-9.-]+ [A-Za-z]{2,}@ \.

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}

adrazen@stanford.edu

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}

Regular Expressions

Time for examples!

1. Write a regular expression to match all email addresses

Technically, this RegEx only matches some 99% of email addresses. Here is
the fully RFC compliant RegEx for all emails… 😱

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}

http://ex-parrot.com/~pdw/Mail-RFC822-Address.html

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user root 205.185.126.149 port 44302 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user root 205.185.126.149 port 44302 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.*

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.* Disconnected from

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.* Disconnected from

authenticating

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.* Disconnected from

authenticating

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.* Disconnected from

(authenticating
|invalid)

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.* Disconnected from

(authenticating
|invalid)?

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.* Disconnected from

(authenticating
|invalid)?

user

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user

.* Disconnected from (authenticating |invalid)?user

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line
mongodb

root

Regular Expressions

2. Write a regular expression to parse username from log line
mongodb

root

.*

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+ port

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+ port

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+ port [0-9]+

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+ port [0-9]+

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+ port [0-9]+ (\[preauth\])?

Regular Expressions

2. Write a regular expression to parse username from log line

13.87.204.143 port 50660 [preauth]

114.5.119.116 port 55342 [preauth]

[0-9.]+ port [0-9]+(\[preauth\])?

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

[0-9.]+ port [0-9]+(\[preauth\])?.*.* Disconnected from (authenticating |invalid)?user

Regular Expressions

2. Write a regular expression to parse username from log line

Jan 13 15:24:43 honeypot sshd[68935]: Disconnected from invalid user mongodb 13.87.204.143 port 50660 [preauth]

.* Disconnected from (authenticating |invalid)?user .* [0-9.]+ port [0-9]+(\[preauth\])?

Jan 13 15:25:02 honeypot sshd[68939]: Disconnected from authenticating user root 205.185.126.149 port 44302 [preauth]

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

REGEX is the regular
expression to search

for text to match

SUBSTITUTION is what we want to
changed the matched phrase to

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

SUBSTITUTION is what we want to
changed the matched phrase to

.* Disconnected from (authenticating |invalid)?user .* [0-9.]+ port [0-9]+(\[preauth\])?

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

SUBSTITUTION is what we want to
changed the matched phrase to

.* Disconnected from (authenticating |invalid)?user .* [0-9.]+ port [0-9]+(\[preauth\])?

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

SUBSTITUTION is what we want to
changed the matched phrase to

.* Disconnected from (authenticating |invalid)?user .* [0-9.]+ port [0-9]+(\[preauth\])?

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

SUBSTITUTION is what we want to
changed the matched phrase to

.* Disconnected from (authenticating |invalid)?user (.*) [0-9.]+ port [0-9]+(\[preauth\])?

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

.* Disconnected from (authenticating |invalid)?user (.*) [0-9.]+ port [0-9]+(\[preauth\])?

\2

Group 1
\1

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

.* Disconnected from (authenticating |invalid)?user (.*) [0-9.]+ port [0-9]+(\[preauth\])?

\2

Group 1
\1

Group 2
\2

Let's use sed for substitution.

Regular Expressions

s/REGEX/SUBSTITUTION/

s indicates we are in
substitution mode

.* Disconnected from (authenticating |invalid)?user (.*) [0-9.]+ port [0-9]+(\[preauth\])?

\2

Group 1
\1

Group 2
\2

Group 3
\3

Let's use sed for substitution.

Regular Expressions

s/.* Disconnected from (authenticating |invalid)?user (.*) [0-9.]+ port [0-9]+(\[preauth\])?/\2/

Basic Data Wrangling: sed

Common Pitfalls and Usage Notes:

Basic Data Wrangling: sed

Common Pitfalls and Usage Notes:

● sed assumes data instances makes one substitution per line. If you want
sed to keep repeating the substitution process for all instances on that
line, use /g:
sed 's/AY21-22/AY22-23/g' file.txt

Basic Data Wrangling: sed

Common Pitfalls and Usage Notes:

● sed assumes data instances makes one substitution per line. If you want
sed to keep repeating the substitution process for all instances on that
line, use /g:
sed 's/AY21-22/AY22-23/g' file.txt

● If you want to use a regex with sed, make sure to include the -E flag:

sed -E 's/AY[0-9]{2}-[0-9]{2}/AY22-23' file.txt

Now that we have all of the usernames, we can run some analysis on the
data!

 is a command that will arrange (i.e. sort) the data alphabetically or
numerically.

The -n flag indicates to sort the data numerically.

Useful Commands

sort

 is a command that reports or filters out the repeated lines in a file.

The -c flag is especially useful as it reports unique lines in the file and
counts the number of occurrences for each line.

Useful Commands

uniq

 is a command that reports or filters out the repeated lines in a file.

The -c flag is especially useful as it reports unique lines in the file and
counts the number of occurrences for each line.

is a command that prints the last lines X lines of a files

The -nX flag allows you to specify the number of lines you are interested
in printing.

Useful Commands

uniq

tail

 is a command that allows you to use the output of one command as
the arguments to another command.

Let's look at an example!

Useful Commands

xargs

 is a command that allows you to use the output of one command as
the arguments to another command.

Useful Commands

xargs

adrazen@ayelet-computer ~ % cat filenames.txt
homework.txt
program.py
todo-list.txt
random.txt

 is a command that allows you to use the output of one command as
the arguments to another command.

Useful Commands

xargs

touch homework.txt

touch program.py

touch todo-list.txt

touch random.txt

 is a command that allows you to use the output of one command as
the arguments to another command.

Useful Commands

xargs

cat filenames.txt | xargs touch

 is a command that allows you to use the output of one command as
the arguments to another command.

Useful Commands

xargs

cat filenames.txt | xargs touch

homework.txt
program.py
todo-list.txt
random.txt

 is a command that allows you to use the output of one command as
the arguments to another command.

Useful Commands

xargs

cat filenames.txt | xargs touch homework.txt program.py
todo-list.txt random.txt

 is a command that allows you to use the output of one command as
the arguments to another command.

Useful Commands

xargs

cat filenames.txt | xargs touch homework.txt program.py
todo-list.txt random.txt

 is a command that allows you to use the output of one command as
the arguments to another command.

Useful Commands

xargs

cat filenames.txt | xargs touch homework.txt program.py
todo-list.txt random.txt

Other Commands and Tools

There are many useful commands, tools and languages out there for data
wrangling. Here are a few to check out if you are interested:

 is a scripting language for manipulating data and generating reports

 is another programming language that is great at data analysis and

plotting.

 is a programming language for text manipulation

awk

R

perl

