
CS 45, Lecture 4
Shell Scripting

Winter 2023 
Akshay Srivatsan, Ayelet Drazen, Jonathan Kula 

Administrivia

● Assignment 1 is due tonight. Reach out if you don't think you will be able
to finish it in time.

● Assignment 2 will go out tonight! It covers shell scripting and text
editors.

● Lecture recordings

● Thank you for the feedback! 🙏

What we know

In Lecture 3, we learned how to:

- Use shell commands to manipulate and analyze data
- Write regular expressions
- Run more complex shell commands such as grep, sort, uniq, xargs

What we will learn today

In today's lecture, we will learn how to:

- Write shell scripts

What is Shell Scripting?

We've seen how to execute commands in the shell and pipe multiple
commands together.

Sometimes, we want to run many, many commands together and/or make
use of control flow expressions such as conditionals and loops.

That's where shell scripting comes in.

What is Shell Scripting?

A shell script is a text file that
contains a sequence of commands
for a UNIX-based operating
system.

It is called a script because it
combines a sequence of
commands—that would otherwise
have to be typed into a keyboard
one at a time—into a single script.

What is Shell Scripting?

Most shells have their own scripting language, each with its own
variables, control flow, and syntax.

What makes shell scripting different from other scripting languages is
that it is optimized for performing shell-related tasks.

Creating command pipelines, saving results into files, and reading from
standard input are baked into in shell scripting, making it easier to use
compared to other scripting languages.

Basics of Bash Scripting

Bash scripting refers to writing a script for a bash shell (Bourne Again
SHell).

Basics of Bash Scripting

Bash scripting refers to writing a script for a bash shell (Bourne Again
SHell).

You can check what shell you are using by running ps -p $$

Basics of Bash Scripting

Bash scripting refers to writing a script for a bash shell (Bourne Again
SHell).

You can check what shell you are using by running

If you are on Linux, your default shell should be a bash shell. If you are on
macOS or Windows, your shell may be different but this shouldn't cause
an issue given that your shell will still know how to "speak" bash.

ps -p $$

Your Very First Script

Let's write a super simple shell script that says hello!

Your Very First Script

Here is a super simple bash script called hello.sh:

#!/usr/bin/env bash

echo "Hello world!"

Your Very First Script

Here is a super simple bash script called hello.sh:

#!/usr/bin/env bash

echo "Hello world!"

The shebang is the very
first line of a script

Shebang

The shebang, also called a sharp exclamation, is the very first line of a
script.

It is the combination of the pound symbol (#) and an exclamation mark
(!).

The shebang is used to specify the interpreter that the given script will
be run with. In our case, we indicate that we want a bash interpreter (i.e.
a bash shell). If you want to run your script with a zsh shell, you simply
change the shebang.

Shebang

A note about shebangs:

There are a number of different ways to write your shebang such as
#!/usr/bin/env bash and #!/bin/bash

We recommend that you always use the former as it increases the
portability of your script. The env command tells the system to resolve
the bash command wherever it lives in the system, as opposed to just
looking inside of /bin

Running (Your Very First Script)

You can always run a shell script by simply prepending it with a shell
interpreter program:

sh hello.sh bash hello.sh zsh hello.sh

Running (Your Very First Script)

You can always run a shell script by simply prepending it with a shell
interpreter program:

sh hello.sh bash hello.sh zsh hello.sh

Interpreter

Running (Your Very First Script)

You can also run a script by turning it into an executable program and
then running it.

Running (Your Very First Script)

You can also run a script by turning it into an executable program and
then running it.

First, turn the program into an executable using chmod (change mode):
chmod +x hello.sh

Running (Your Very First Script)

You can also run a script by turning it into an executable program and
then running it.

First, turn the program into an executable using chmod (change mode):

Makes the program executable

chmod +x hello.sh

Running (Your Very First Script)

You can also run a script by turning it into an executable program and
then running it.

First, turn the program into an executable using chmod (change mode):

Then run the program:

chmod +x hello.sh

./hello.sh

Bash Scripting: Variables

To assign variables, use the following:

x=foo

Bash Scripting: Variables

To assign variables, use the following:

You can access the value of x using the following:

x=foo

$x

Bash Scripting: Variables

To assign variables, use the following:

You can access the value of x using the following:

Note: you cannot use (with spaces) because it is
interpreted as trying to run a program x with two arguments: = and foo.

x=foo

$x

x = foo

Bash Scripting: Strings

Next, we can define strings.

If we want to define a string literal, we will use single quotes:

'$x'

Bash Scripting: Strings

Next, we can define strings.

If we want to define a string literal, we will use single quotes:

If we want to define a string that allows substitution, we will use double
quotes:

'$x'

"$x"

Bash Scripting: Strings

Here's the difference in behavior:

x=foo
echo '$x'
prints $x

x=foo
echo "$x"
prints foo

Your Very First Script

Let's use a variable in hello.sh:

#!/usr/bin/env bash

greeting="Hello world!"
echo $greeting

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

#!/usr/bin/env bash

if [CONDITION]
then

do something
fi

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

#!/usr/bin/env bash

num=101
if [$num -gt 100]
then

echo "That's a big number!"
fi

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

#!/usr/bin/env bash

num=101
if [$num -gt 100] && [$num -lt 1000]
then

echo "That's a big (but not a too big) number!"
fi

Bash Scripting: Control Flow

#!/usr/bin/env bash

if [CONDITION]
then

do something
elif [CONDITION]
then

do something else
else

do something totally different
fi

Bash Scripting: Control Flow

#!/usr/bin/env bash

num=101
if [$num -gt 100]
then

echo "That's a big number!"
elif [$num -gt 1000]
then

echo "That's a huge number!"
else

echo "That's a small number."
fi

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

#!/usr/bin/env bash

while [CONDITION]
do

do something
done

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

#!/usr/bin/env bash

num=0
while [$num -lt 100]
do

echo $num
num=$((num+1))

done

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

#!/usr/bin/env bash

for VARIABLE in {1..N}
do

do something
done

Bash Scripting: Control Flow

Like other programming languages, bash scripts also have control flow
directives such as if, for, while, and case.

#!/usr/bin/env bash

num=0
for i in {1..100}
do

echo $num
num=$((num+1))

done

Bash Scripting: Exercise

Exercise 1: Write a shell script called num_loop.sh that loops through
every number 1 through 20 and prints each number to standard output.
The script should also conditionally print I'm big! for every number
larger than 10.

Bash Scripting: Exercise

#!/usr/bin/env bash

for i in {1..20}
do

echo $i
if [$i -gt 20]
then

echo "I'm big!"
fi

done

Bash Scripting: Arguments

Let's take a look at how we might use command line arguments to make
our big_num.sh script a little more interesting.

Bash Scripting: Arguments

Let's take a look at how we might use command line arguments to make
our big_num.sh script a little more interesting.

In bash, the variables $1 - $9 refers to the arguments to a script.

Bash Scripting: Arguments

Let's take a look at how we might use command line arguments to make
our big_num.sh script a little more interesting.

In bash, the variables $1 - $9 refers to the arguments to a script.

adrazen@ayelet-computer ~ % sh my_script.sh ayelet

Let's take a look at how we might use command line arguments to make
our big_num.sh script a little more interesting.

In bash, the variables $1 - $9 refers to the arguments to a script.

adrazen@ayelet-computer ~ % sh my_script.sh ayelet

Bash Scripting: Arguments

This is $1

Bash Scripting: Arguments

Let's take a look at how we might use command line arguments to make
our big_num.sh script a little more interesting.

In bash, the variables $1 - $9 refers to the arguments to a script.

The variable $0 refers to the name of the script.

adrazen@ayelet-computer ~ % sh my_script.sh ayelet

This is $1

adrazen@ayelet-computer ~ % sh my_script.sh ayelet

Bash Scripting: Arguments

Let's take a look at how we might use command line arguments to make
our big_num.sh script a little more interesting.

In bash, the variables $1 - $9 refers to the arguments to a script.

The variable $0 refers to the name of the script.

This is $0 This is $1

Bash Scripting: Arguments

Let's assign num to be the first argument when calling the script.

adrazen@ayelet-computer ~ % sh big_num.sh 102

Bash Scripting: Arguments

Let's assign num to be the first argument when calling the script.

adrazen@ayelet-computer ~ % sh big_num.sh 102

This is $1

Bash Scripting: Arguments

Let's assign num to be the first argument when calling the script.

adrazen@ayelet-computer ~ % sh big_num.sh 102

#!/usr/bin/env bash

num=101
if [$num -gt 100]
then

echo "That's a big number!"
fi

Bash Scripting: Arguments

Let's assign num to be the first argument when calling the script.

#!/usr/bin/env bash

num=$1
if [$num -gt 100]
then

echo "That's a big number!"
fi

adrazen@ayelet-computer ~ % sh big_num.sh 102

Bash Scripting: Functions

We can also define functions!

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
calls mkdir (including parent directories)
calls cd

}

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter(directory_name) {
mkdir -p directory_name
cd directory_name

}

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter(directory_name) {
mkdir -p directory_name
cd directory_name

}

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter new_folder

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter new_folder

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter new_folder

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter new_folder

adrazen@ayelet-computer ~ % sh mcd.sh

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter new_folder

adrazen@ayelet-computer ~ % sh mcd.sh my_folder

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter new_folder

adrazen@ayelet-computer ~ % sh mcd.sh my_folder

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter $1

adrazen@ayelet-computer ~ % sh mcd.sh my_folder

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter $1

adrazen@ayelet-computer ~ % sh mcd.sh my_folder

Bash Scripting: Functions

We can also define functions!

#!/usr/bin/env bash

make_and_enter() {
mkdir -p "$1"
cd "$1"

}

make_and_enter $1

adrazen@ayelet-computer ~ % sh mcd.sh my_folder

Bash Scripting: Exercise

Exercise 2: Write a shell script called my_folder.sh that takes in two
arguments: your name (e.g. ayelet) and your name with the .txt
ending (e.g. ayelet.txt). The script should call a function that creates
a folder by the name of the first argument (e.g. ayelet) and then create
a file inside by the name of the second argument (e.g. ayelet.txt).

For my name, my function would create a folder named ayelet and a file
named ayelet.txt inside of ayelet.

Bash Scripting: Exercise

#!/usr/bin/env bash

make_my_folder() {
mkdir "$1"
cd "$1"
touch "$2"

}

make_my_folder $1 $2

adrazen@ayelet-computer ~ % my_folder.sh ayelet ayelet.txt

Bash Scripting: Return Values

The notion of exit codes allows for verifying the success or failure of a
previous command.

Bash Scripting: Return Values

The notion of exit codes allows for verifying the success or failure of a
previous command.

An exit code or return value is the way scripts or commands can
communicate with each other about how execution went.

Bash Scripting: Return Values

The notion of exit codes allows for verifying the success or failure of a
previous command.

An exit code or return value is the way scripts or commands can
communicate with each other about how execution went.

A return value of 0 means that everything went OK. A return value other
than 0 means that an error occurred.

Bash Scripting: Return Values

The notion of exit codes allows for verifying the success or failure of a
previous command.

An exit code or return value is the way scripts or commands can
communicate with each other about how execution went.

A return value of 0 means that everything went OK. A return value other
than 0 means that an error occurred.

 provides the return value from the most recently executed command$?

Bash Scripting: Return Values

If you ever need a placeholder for a command that succeeds or fails, you
can use the true and false commands.

Bash Scripting: Return Values

If you ever need a placeholder for a command that succeeds or fails, you
can use the true and false commands.

 is a command that does nothing except return an exit status of 0.

 is a command that does nothing except return an exit status of 1.

true

false

Bash Scripting: Return Values

#!/usr/bin/env bash

result=$(($RANDOM % 2))
if [$result -eq 0]
then

true
echo "$?"

else
false
echo "$?"

fi

adrazen@ayelet-computer ~ % sh success_or_failure.sh

Bash Scripting: Return Values

Return values are useful if you want to conditionally execute commands
based on the execution of the previous command.

Bash Scripting: Return Values

Return values are useful if you want to conditionally execute commands
based on the execution of the previous command.

In addition to using if-statements, we can also conditionally execute
commands using and .&& ||

Bash Scripting: Return Values

Return values are useful if you want to conditionally execute commands
based on the execution of the previous command.

In addition to using if-statements, we can also conditionally execute
commands using and .&& ||

true && echo "Print if things went well!"
prints "Print if things went well!"

Bash Scripting: Return Values

Return values are useful if you want to conditionally execute commands
based on the execution of the previous command.

In addition to using if-statements, we can also conditionally execute
commands using and .&& ||

true && echo "Print if things went well!"
prints "Print if things went well!"

false && echo "Print if things went well!"
no output

Bash Scripting: Exercise

Exercise 3: Write a shell script called file_checker.sh that checks if
a file exists or not. The script take in a file name as an argument and try
to run cat on that file. The script should then check the exit code of the
cat command to determine if the file exists or not. If the file exists, the
script should print File exists!. If the file does not exist, the script
should print File does not exist!.

Bonus: change the script to suppress the actual output of cat and only
include your script's output (e.g. File exists! or File does not
exist!).

Bash Scripting: Exercise

#!/usr/bin/env bash

cat $1
if [$? -eq 0]
then

echo "File exists!"
else

echo "File does not exist!"
fi

Bash Scripting: Exercise

#!/usr/bin/env bash

cat $1 &> /dev/null
if [$? -eq 0]
then

echo "File exists!"
else

echo "File does not exist!"
fi

Bash Scripting: Exercise

#!/usr/bin/env bash

cat $1 && echo "File exists!"
cat $1 || echo "File does not exist!"

Bash Scripting: Exercise

#!/usr/bin/env bash

cat $1 &> /dev/null && echo "File exists!"
cat $1 &> /dev/null || echo "File does not exist!"

Bash Scripting: Command Substitution

Command substitution is another useful feature of bash scripting.

You might want to run a command and then use its output as a variable
to some other piece of code.

Bash Scripting: Command Substitution

Command substitution is another useful feature of bash scripting.

You might want to run a command and then use its output as a variable
to some other piece of code.

Example:
#!/usr/bin/env bash

for element in $(ls ~/Desktop)
do

echo "Desktop contains file named $element"
done

Bash Scripting: Extra Syntax

Bash scripting has some specific syntax that is worth calling out.

If you're ever stuck, look something up 😁

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [condition]
then

do something
fi

if [[condition]]
then

do something
fi

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

What's the difference?

if [condition]
then

do something
fi

if [[condition]]
then

do something
fi

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [condition] if [[condition]]

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [condition] if [[condition]]

Single brackets are a
reference to the the test
command

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [condition] if [[condition]]

Single brackets are a
reference to the the test
command

Double brackets are bash
specific. (Also works for zsh)

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [1 < 2]
then

echo "Correct!"
fi

if [[1 < 2]]
then

echo "Correct!"
fi

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [1 < 2]
then

echo "Correct!"
fi

if [[1 < 2]]
then

echo "Correct!"
fi

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [1 < 2]
then

echo "Correct!"
fi

if [[1 < 2]]
then

echo "Correct!"
fi

2: No such file or
directory

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [1 < 2]
then

echo "Correct!"
fi

if [[1 < 2]]
then

echo "Correct!"
fi

2: No such file or
directory

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [1 < 2]
then

echo "Correct!"
fi

if [[1 < 2]]
then

echo "Correct!"
fi

2: No such file or
directory

Correct!

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

if [condition] if [[condition]]

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

In general, single brackets are recognized by more scripting languages and
are POSIX compliant. (Won't work with sh interpreter unless linked to bash.)

if [condition] if [[condition]]

Bash Scripting: [vs [[

When you have an if-statement, you need to encapsulate the condition. You
can do this in two ways:

In general, single brackets are recognized by more scripting languages and
are POSIX compliant. (Won't work with sh interpreter unless linked to bash.)

Double brackets are less portable, but they align with what you would expect
from high level coding languages. You can use comparison operators such
as < or > and logical operators such as && or ||.

if [condition] if [[condition]]

Bash Scripting: Comparison

In order to compare numbers in a bash script, use the following:

 for checking if a is equal to ba -eq b

Bash Scripting: Comparison

In order to compare numbers in a bash script, use the following:

 for checking if a is equal to b

 for checking if a is not equal to b

a -eq b

a -ne b

Bash Scripting: Comparison

In order to compare numbers in a bash script, use the following:

 for checking if a is equal to b

 for checking if a is not equal to b

 for checking if a is greater than b

a -eq b

a -ne b

a -gt b

Bash Scripting: Comparison

In order to compare numbers in a bash script, use the following:

 for checking if a is equal to b

 for checking if a is not equal to b

 for checking if a is greater than b

 for checking if a is greater than or equal to b

a -eq b

a -ne b

a -gt b

a -ge b

Bash Scripting: Comparison

In order to compare numbers in a bash script, use the following:

 for checking if a is equal to b

 for checking if a is not equal to b

 for checking if a is greater than b

 for checking if a is greater than or equal to b

 for checking if a is less than b

a -eq b

a -ne b

a -gt b

a -ge b

a -lt b

Bash Scripting: Comparison

In order to compare numbers in a bash script, use the following:

 for checking if a is equal to b

 for checking if a is not equal to b

 for checking if a is greater than b

 for checking if a is greater than or equal to b

 for checking if a is less than b

 for checking if a is less than or equal to b

a -eq b

a -ne b

a -gt b

a -ge b

a -lt b

a -lt b

Bash Scripting: Comparison

In order to compare strings in a bash script, use the following:

 for checking if s1 is equal to s2s1 = s2

Bash Scripting: Comparison

In order to compare strings in a bash script, use the following:

 for checking if s1 is equal to s2

 for checking if s1 is not equal to s2

s1 = s2

s1 != s2

Bash Scripting: Comparison

In order to compare strings in a bash script, use the following:

 for checking if s1 is equal to s2

 for checking if s1 is not equal to s2

 for checking if s1 is less than s2 by lexicographical order

s1 = s2

s1 != s2

s1 < s2

Bash Scripting: Comparison

In order to compare strings in a bash script, use the following:

 for checking if s1 is equal to s2

 for checking if s1 is not equal to s2

 for checking if s1 is less than s2 by lexicographical order

 for checking if s1 is greater than to s2 by lexicographical order

s1 = s2

s1 != s2

s1 < s2

s1 > s2

Bash Scripting: Comparison

In order to compare strings in a bash script, use the following:

 for checking if s1 is equal to s2

 for checking if s1 is not equal to s2

 for checking if s1 is less than s2 by lexicographical order

 for checking if s1 is greater than to s2 by lexicographical order

 for checking if s1 has a length greater than 0

s1 = s2

s1 != s2

s1 < s2

s1 > s2

-n s1

Bash Scripting: Comparison

In order to compare strings in a bash script, use the following:

 for checking if s1 is equal to s2

 for checking if s1 is not equal to s2

 for checking if s1 is less than s2 by lexicographical order

 for checking if s1 is greater than to s2 by lexicographical order

 for checking if s1 has a length greater than 0

 for checking if s1 has a length of 0

s1 = s2

s1 != s2

s1 < s2

s1 > s2

-n s1

-z s1

Bash Scripting: Arithmetic

To do arithmetic, we need to follow bash syntax.

Bash Scripting: Arithmetic

To do arithmetic, we need to follow bash syntax.

To add two numbers 1 and 2, and then assign to a variable a:
a=$((1+2))

Bash Scripting: Arithmetic

To do arithmetic, we need to follow bash syntax.

To add two numbers 1 and 2, and then assign to a variable a:

You can also use the let keyword:

a=$((1+2))

let a=1+2

Bash Scripting: Arithmetic

To do arithmetic, we need to follow bash syntax.

To add two numbers 1 and 2, and then assign to a variable a:

You can also use the let keyword:

You can use the expr keyword:

a=$((1+2))

let a=1+2

a=$(expr 1 + 2)

Bash Scripting: Exercise

Exercise 4: Write a shell script called timely_greeting.sh that greets
you based on the current time. The script should call the date
command, extract the current hour (look into using %H) and then print
the following greeting based on the time.

If it is between 5AM (05:00) and 12PM (12:00): Good morning!

If it is between 12PM (12:00) and 6PM (18:00): Good afternoon!

If it is between 6PM (18:00) and 5AM (5:00): Good night!

Bash Scripting: Exercise

#!/usr/bin/env bash

time=$(date +%H)
if [$time -gt 5] && [$time -lt 12]
then

echo "Good morning!"
elif [$time -gt 12] && [$time -lt 18]
then

echo "Good evening!"
elif [$time -gt 18] && [$time -lt 5]
then

echo "Good night!"
fi

Advanced Running

You can turn your shell script into a "command" by moving it to ~/bin.
For example if you have a script called hello, you could do the
following:

You can then run the command by just calling hello:

Note: this probably won't work yet on your computer but we will learn
about it in a later lecture.

adrazen@ayelet-computer ~ % mv hello ~/bin/

adrazen@ayelet-computer ~ % hello

