
Winter 2023

CS45, Lecture 5
Text Editors

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

1



● Assignment 2 was released on Monday. After today’s lecture, you should 
have all the tools you need to complete it!
○ A2 is due next Monday the 30th at 11:59 pm

● Lectures are now being recorded as a back-up!
○ They can be found in Canvas
○ They still won’t be professional-quality since we’re managing them 

ourselves, so no guarantees, but they’re there as a backup for if you can’t 
make it to lecture.

2

Administrivia



● Understand the use case of rich text editors vs plain text editors
● Understand the use case of TUI vs GUI text editors
● Have some concrete practice using the vim editor
● Have some concrete practice using Visual Studio Code

Learning Goals

3



● Rich Text allows you to format your text however you’d like.
● It’s extremely flexible, but requires a ton of additional data to be 

associated with the text.
● Information is structured around elements of prose: words, paragraphs, 

headings…
● Rich text is for humans, not for computers. (Computers don’t need all 

the extra information!)
● Example rich text editors: Word, Google Docs, WordPad
● We’re not going to focus on rich text during this course, but it’s useful to 

know the difference.

Rich Text

4



Meanwhile…

● Plain text is how we communicate with computers (for the most part)
● Myriad applications exist for text editing

○ GUI (Graphical) applications: Visual Studio Code, JetBrains IDEs, TextEdit…
○ TUI (Terminal UI) applications: vim, emacs, nano, micro*
○ CLI (command-only) applications: ed, ex (and via scripting, as seen before!)

Plain Text

5



● New editors have learning curves! (No matter the kind!)
● Our recommendation: Choose one visual IDE (Visual Studio Code is 

what we’ll be using) and one TUI editor (we’ll be showing off vim) to learn
● It’ll be slower at first, but after 10-20 hours of practice, you’ll be just as 

fast, and then faster than others after 20!
● Look things up! Often there’s a faster way to go about doing things.

○ Build up your knowledge base as you go!

Let’s learn vim!

Learning a new editor

6



● vim was inspired by and spun off of vi, and stands 
for VI iMitation. 

● vi was one of the first TUI editors, based on the 
editor ed (and the visual mode of CLI tool ex), 
which required you to edit line by line using 
certain commands.

● vi, and vim, continue to use that idea of 
commands and modes.

A Quick History

Bill Joy, the creator of vi 

7



vim uses different “modes” to control editing.

● You always start in normal mode, used for navigating around the file.
● You press i to enter insert mode, to write text
● You press R to enter replace mode, to overwrite text
● You press v to enter visual mode, for copying or deleting lines of text at 

a time
● You press : to enter command mode, which allows you to do all sorts of 

things (like save, quit, find-replace, etc)

The Modal Editor

8



Follow along on your terminals!

curl -Lo vim_nav.txt https://cs45.stanford.edu/res/lec5/vim_nav.txt

vim vim_nav.txt

Demo time!

9



● vim differentiates between “buffers” and “windows.”
● Buffers are an open file. A buffer can be open in one or more windows.
● Windows are “views” into a buffer.

○ You could have multiple windows open to the same buffer!
○ This means that your changes in one window will instantly reflect in the 

other
● :q closes the current window

Windows & Buffers

10



● You can customize vim by writing a .vimrc file in your home directory
○ My .vimrc makes the mouse work, adds line numbers, and makes backspace 

and arrow keys work like I’d expect from an editor
● You can add even more plugins either manually or using a plugin 

manager like vundle
○ I have plugins that let me search files, match braces, mark indentations, etc

Configuring vim

11



Let’s take a look at my .vimrc file

vim https://cs45.stanford.edu/res/lec5/.vimrc

Demo time!

12



What are IDEs?

Integrated Developer Environments, or IDEs, are applications for 
software code editing that bundle together lots of functionality for 
developer productivity into one place.

In particular, they usually bundle code editing with syntax highlighting 
and autocomplete, error checking, build tools, testing tools, and the ability 
to run code all into one application.

From TUI to GUI

13



Why VSCode?

● VSCode strongly supports remote editing, allowing you to access and 
edit resources on a server, without needing a GUI shell to be installed on 
the server at all.

● Some other IDEs are slowly starting to support this (e.g. JetBrains, in 
beta), but VSCode is also free and has wide language support.

Visual Studio Code

14



Let’s see some of the things VSCode can do!

Demo time!

15


