
CS45, Lecture 3: Shell Scripting

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

Winter 2023

Contents

1 Lecture Overview 1

2 What is Shell Scripting? 2

3 Bash Scripting: Basic Mechanics 2
3.1 Your Very First Script . 2
3.2 Shebangs . 2
3.3 Running a Script . 2

4 Bash Scripting: Variables and Strings 3
4.1 Variables . 3
4.2 Strings . 3

5 Bash Scripting: Control Flow Directives 3
5.1 If Statements . 3
5.2 While Loops . 4
5.3 For Loops . 5
5.4 Exercise 1 . 5

6 Bash Scripting: Arguments and Functions 6
6.1 Arguments . 6
6.2 Functions . 6
6.3 Exercise 2 . 7

7 Exit Codes and Command Substitution 7
7.1 Exit Codes . 7
7.2 Exercise 3 . 8
7.3 Command Substitution . 9

8 Bash Scripting: Other Syntax 9
8.1 Comparisons . 9
8.2 Exercise 4 . 9

1 Lecture Overview

In Lecture 3, we learned how to use shell commands and pipelines to manipulate and analyze data. We also
learned how to write regular expressions and how to incorporate these into tools such as sed . Finally, we
learned how to run complex shell commands such as grep , sort , uniq , and xargs . In today’s lecture we will
learn how to write shell scripts and the syntax of shell scripts.

1

2 What is Shell Scripting?

We’ve already seen how to execute simple commands in the shell and pipe multiple commands together.
Sometimes, we want to run many commands together and make use of control flow expressions such as
conditionals and loops. This is where shell scripting comes in.

A shell script is a text file that contains a sequence of commands for a Unix-based operating system. It is
called a script because it combines a sequence of commands-that would otherwise have to be typed into a
keyboard one at a time-into a single script.

Most shells have their own scripting language, each with variables, control flow, and its own syntax. (You
may have heard of bash scripting as a popular scripting language. Bash scripting is a type of shell scripting.)
What makes shell scripting different from other scripting languages is that it is optimized for performing
shell-related tasks. Creating command pipelines, saving results into files, and reading from standard input
are primitives in shell scripting, making it easier to use compared to other scripting languages. (For example,
if you want to run the cd command in Python, you would need to import the os library and then call chdir

from that library.)

3 Bash Scripting: Basic Mechanics

Bash scripting refers to writing a script for a bash shell (Bourne Again SHell). You can check what shell
you are using by running ps -p $$. If you are on Linux, your default shell should be a bash shell. If you are
on macOS or Windows, you may need to switch to a bash shell. On macOS run exec bash to launch a bash
shell. On Windows, run bash to launch a bash shell.

3.1 Your Very First Script

Now that we have a bash shell, we can write our very first bash script, called hello.sh . Shell scripts normally
end with the .sh ending to indicate that they are scripts. To run a script, you will type the following at
your command line: sh hello.sh

This script will make use of the echo command that we learned about in Lecture 2.

1 #!/usr/bin/env bash

2 echo "Hello world!"

3.2 Shebangs

The first line in our script (#!/usr/env/ bash) is called a shebang, or sharp exclamation. It the combination
of the pound symbol (#) and an exclamation mark (!). The shebang is used to specify the interpreter that
the given script will be run with. In our case, we indicate that we want our script to be run with a bash
interpreter (i.e. a bash shell). If you want to run your script with a zsh shell, you would change your shebang
to reflect as such.

There are a number of different ways to write your shebang such as #!/usr/bin/env bash and #!/bin/bash . We
recommend that you always use the former as it increases the portability of your script. The env command
tells the system to resolve the bash command wherever it lives in the system, as opposed to just looking
inside of /bin .

Another example of a shebang that may be useful to many of you is using a shebang to write a python script.
You may be familiar with writing a Python script and then running the script by calling python3 . Yous can
also create a Python script and specify that it should be run with Python using the shebang.

3.3 Running a Script

You can always run a shell script by simply prepending it with a shell interpreter program such as sh hello.sh ,
bash hello.sh , or zsh hello.sh .

2

You can also run a script by turning it into an executable program and then running it. First, you need to
turn the program into an executable using the chmod (change mode) command. This command is used for
changing the file permissions on a file, such as making the file executable. In our case, we will chmod with
the +x argument to turn the script into an executable. You can do so as follows:
chmod +x hello.sh

To run the script, you would then simply run the program with ./hello.sh (which is likely similar to how
you have run other programs in the past.

4 Bash Scripting: Variables and Strings

4.1 Variables

Now that we have a basic script, let’s talk about the mechanics of bash scripting. When writing a bash
script, you can assign variables using the syntax x=foo . You can then access this variable using the syntax
$x . One thing to be careful of is that when you assign a variable in a bash script, you should not add
extra spaces. If you write x = foo then the line will be interpreted as running a program called x with the
arguments = and foo . In general, shell scripts interpret the space character as an argument splitter.

4.2 Strings

We can also define strings in a bash script. If we want to define a string literal, we will use single quotation
marks: ’$x’ . If we want to define a string that allows substitution, we will use double quotes: "$x" . The
double quotes will allow for substitution of variables:

1 x=foo

2 echo ’$x’
3 # prints $x
4 echo "$x"
5 # prints foo

5 Bash Scripting: Control Flow Directives

Like other programming languages, bash scripts also have control flow directives such as if , for , while ,
and case .

5.1 If Statements

The syntax for writing an if statement in bash is as follows:

1 #!/usr/bin/env bash

2

3 if [CONDITION]

4 then

5 # do something

6 fi

The condition we are interested in is denoted by CONDITION .

Let’s take a look at an example of a bash script with an if statement:

1 #!/usr/bin/env bash

2

3 num =101

4 if [$num -gt 100]

5 then

6 echo "That’s a big number!"

7 fi

3

In this script, we begin by assigning a variable num to be equal to 101 on line 3. We then check whether num

is greater than 100. Notice that we use the syntax $num to access the value of num . We use the comparison
operator -gt to compare num to 100 . In bash, comparisons for integers and strings are done differently. -gt

is an integer comparison operator while > is a string comparison operator (that compares ASCII values).
The use of the square brackets is actually a synonym for the test command, which tests the validity of a
command or statement.

We can also write an if-statement with multiple conditions. In this example, we will check if num is both
greater than 100 and less than 1000 .

1 #!/usr/bin/env bash

2

3 num =101

4 if [$num -gt 100] && [$num -lt 1000]

5 then

6 echo "That’s a big (but not a too big) number!"

7 fi

Again, in this script we assign num to be 101. We first check if num is greater than 100 . We than add a
second condition using the && syntax. Our second condition checks if num is less than 1000.

We can also use elif (for else if) and else if we have multiple different blocks of code. Here is the syntax
for using if , elif , and else :

1 #!/usr/bin/env bash

2

3 if [CONDITION]

4 then

5 # do something

6 elif [CONDITION]

7 then

8 # do something else

9 else

10 # do something totally different

11 fi

The above syntax should look fairly similar to the traditional if statement. Here is an example of code that
uses if , elif , and else :

1 #!/usr/bin/env bash

2

3 num =101

4 if [$num -gt 1000]

5 then

6 echo "That’s a huge number!"

7 elif [$num -gt 100]

8 then

9 echo "That’s a big number!"

10 else

11 echo "That’s a small number."

12 fi

5.2 While Loops

We can also add while loops to our bash scripts. The syntax for adding a while loop to a bash script is the
following:

1 #!/usr/bin/env bash

2

3 while [CONDITION]

4 do

5 # do something

6 done

4

Again, the condition of interest is denoted as CONDITION .

Here is an example of a script that initializes num to 0 and continues looping until num reaches a value of
99 .

1 #!/usr/bin/env bash

2

3 num=0

4 while [$num -lt 100]

5 do

6 echo $num
7 num=$((num+1))
8 done

Notice how we access the variable num with the $ syntax: $num . We use the -lt flag to compare num to
100 . When then print the value of num using the echo command. To increment the value of num , we use the
double parentheses ((..)) for arithmetic evaluation. Inside of the double parentheses, we can increment
the value of num by 1.

5.3 For Loops

To declare a for loop in bash, we can declare either an index-based for loop or a range-based for-loop. To
declare an index based for-loop, we will use the following syntax:

1 #!/usr/bin/env bash

2

3 for VARIABLE in 1 2 3 .. N

4 do

5 # do something

6 done

Perhaps, we are interested in implementing the above while loop as for loop:

1 #!/usr/bin/env bash

2

3 num=0

4 for i in {0..99}

5 do

6 echo $num
7 num=$((num+1))
8 done

Notice that we define our iterator i and we set the bounds of the for-loop to be 0 and 99.

5.4 Exercise 1

Let’s put our scripting expertise to use and write a bash script. You should write a script called num loop.sh

that loops through every number 1 through 20 and prints each number to standard output. The script
should also conditionally print I’m big! for every number larger than 10 .

Solution: Here is one possible solution : num=$1 :

1 #!/usr/bin/env bash

2

3 for i in {1..20}

4 do

5 echo $i
6 if [$i -gt 10]

7 then

8 echo "I’m big!"

9 fi

10 done

5

6 Bash Scripting: Arguments and Functions

6.1 Arguments

Our big num.sh script isn’t very interesting as it will always print the same thing: ”That’s a big number!” Let’s
take a look at how we might use command line arguments to make this script a little more interesting.

In bash, the variables $1 - $9 refers to the arguments to a script. The variable $0 refers to the name of the
script. For example, consider the following:
adrazen@thinking-computer CS45 % sh my script.sh ayelet

In this case, the name of the script (my script.sh) is defined by the variable $0 . The first argument to the
script (ayelet) is defined by the variable $1 . In the case of our big number.sh script, we can change the value
of num to be dependent on the first argument that is passed in when the script is invoked. In other words,
num will simply be the value of $1 .

Let’s assume that we invoke the script as follows:
adrazen@ayelet-computer CS45 % sh big num.sh 102

In our script, we can replace the line num=101 to be num=$1 :

1 #!/usr/bin/env bash

2

3 num=$1
4 if [$num -gt 100]

5 then

6 echo "That’s a big number!"

7 fi

By changing line 3, we now set the value of num to be the first argument from the command line when
invoking the script. This means the use could pass a different value every time they invoke the script.

6.2 Functions

We can also define functions in bash. Let’s define a function for making a new directory and then entering
that directory. (This is a pretty commaon thing that users want to do and there is actually a command called
mcd in UNIX to allow users to do that.) We can use the commands mkdir and cd to achieve this. When
running mkdir , we want to make sure that we also create any necessary intermediate directories. Therefore,
we will want to make sure we pass the -p flag when calling mkdir , which creates all the intermediate direc-
tories on the path to the final directory that do not already exist.

When defining a function in bash, you may wonder how to pass arguments to the function. Let’s take
a look at our function so far and how you might think of passing arguments:

1 #!/usr/bin/env bash

2

3 make_and_enter(directory_name) {

4 mkdir -p directory_name

5 cd directory_name

6 }

Unfortunately, this won’t work in bash. In bash, we will refer to arguments that are passed into a function
based on their position. For instance, we might use the value of the very first argument and refer to it using
$1 .

1 #!/usr/bin/env bash

2

3 make_and_enter () {

4 mkdir -p "$1"
5 cd "$1"
6 }

6

When we want to invoke our function, we will use the following line:
make and enter new folder

In this case, we are calling our function (i.e. make and enter) with the argument new folder . Our script will
look as follows:

1 #!/usr/bin/env bash

2

3 make_and_enter () {

4 mkdir -p "$1"
5 cd "$1"
6 }

7

8 make_and_enter new_folder

Now consider that we want the name of the new folder to be passed from the command line whenever the
script is invoked. In that case, we would invoke the script as follows: adrazen@ayelet-computer CS45 % sh mcd.sh my folder

In order for the argument new folder to be used inside of our function, we need to make sure that we pass
it into the function. In this case, we need to pass the argument from the command line invocation to
the function call, and then from the function call to the function body. Our final script would look as
follows:

1 #!/usr/bin/env bash

2

3 make_and_enter () {

4 mkdir -p "$1"
5 cd "$1"
6 }

7

8 make_and_enter "$1"

6.3 Exercise 2

Let’s try another exercise to solidify our function-writing and argument-passing skills. In this exercise, you
should write a shell script called my folder.sh that takes in two arguments: your name (e.g. ayelet) and
your name with the .txt ending (e.g. ayelet.txt). The script should call a function that creates a folder
by the name of the first argument (e.g. ayelet) and then create a file inside by the name of the second
argument (e.g. ayelet.txt). For my name, my function would create a folder named ayelet and a file named
ayelet.txt inside of ayelet .

Solution:

Here is possible solution to this problem:

1 #!/usr/bin/env bash

2

3 make_my_folder () {

4 mkdir "$1"
5 cd "$1"
6 touch "$2"
7 }

8

9 make_my_folder $1 $2

7 Exit Codes and Command Substitution

7.1 Exit Codes

The notion of exit codes allows for verifying the success or failure of a previous command. An exit code
or return value is the way scripts or commands can communicate with each other about how execution
went. A return value of 0 means that everything went OK. A return value other than 0 means that an error

7

occurred. $? provides the return value from the previous command. (For students who are familiar with
C/C++, you may notice that the main() function always returns an int and that this int is often 0. The
int returned by main() is the exit code for the program.)

If you ever need a placeholder for a command that succeeds or fails, you can use the true and false commands.
true is a command that does nothing except return an exit status of 0. false is a command that does nothing
except return an exit status of 1.

Below is an example of a script that randomly generates either 0 or 1 and runs a either the true or the false

command based on this random value. The script then checks the return value of the previous command.
As you can tell, this script is a bit contrived but it demonstrates how you might use the return value of the
previous command as an input to the next command.

1 #!/usr/bin/env bash

2

3 result=$(($RANDOM % 2))

4 if [$result -eq 0]

5 then

6 true

7 echo "$?"
8 else

9 false

10 echo "$?"
11 fi

Return values are useful if you want to conditionally execute commands based on the execution of the
previous command. In addition to using if-statements, we can also conditionally execute commands using
&& and || .

7.2 Exercise 3

Exercise 3: Write a shell script called file checker.sh that checks if a file exists or not. The script take in a
file name as an argument and try to run cat on that file. The script should then check the exit code of the
cat command to determine if the file exists or not. If the file exists, the script should print File exists! . If
the file does not exist, the script should print File does not exist! .

Bonus: change the script to suppress the actual output of cat and only include your script’s output (e.g.
File exists! or File does not exist!).

Solution:

Below is one possible solution:

1 #!/usr/bin/env bash

2

3 cat $1
4 if [$? -eq 0]

5 then

6 echo "File exists!"

7 else

8 echo "File does not exist!"

9 fi

To suppress the output of cat , you should modify the script as follows:

1 #!/usr/bin/env bash

2

3 cat $1 &> /dev/null

4 if [$? -eq 0]

5 then

6 echo "File exists!"

7 else

8 echo "File does not exist!"

9 fi

8

7.3 Command Substitution

Command substitution is another useful feature of bash scripting. You might want to run a command
and then use its output as a variable to some other piece of code.

Here is an example of a script that uses command substitution:

1 #!/usr/bin/env bash

2

3 for element in $(ls ~/ Desktop)

4 do

5 echo "Desktop contains file named $element"
6 done

8 Bash Scripting: Other Syntax

There is plenty of other syntax to keep in mind when it comes to bash scripting. Here are a few other syntax
details for bash.

8.1 Comparisons

Bash draws a distinction between comparisons for numbers and comparisons for strings. In order to compare
numbers in a bash script, use the following:

• a -eq b for checking if a is equal to b

• a -ne b for checking if a is not equal to b

• a -gt b for checking if a is greater than b

• a -ge b for checking if a is greater than or equal to b

• a -lt b for checking if a is less than b

• a -le b or checking if a is less than or equal to b

In order to compare strings in a bash script, use the following:

• s1 = s2 for checking if s1 is equal to s2

• s1 != s2 for checking if s1 is not equal to s2

• s1 < s2 for checking if s1 is less than s2 by lexicographical order

• s1 > s1 for checking if s1 is greater than s2 by lexicographical order

• -n s1 for checking if s1 has a length greater than 0

• -z s1 for checking if s1 has a length of 0

8.2 Exercise 4

Exercise 4: Write a shell script called timely greeting.sh that greets you based on the current time. The
script should call the date command, extract the current hour (look into using %H) and then print the
following greeting based on the time.

• If it is between 5AM (05:00) and 12PM (12:00): Good morning!

• If it is between 12PM (12:00) and 6PM (18:00): Good afternoon!

• If it is between 6PM (18:00) and 5AM (5:00): Good night!

Solution: Here is one possible solution:

9

1 #!/usr/bin/env bash

2

3 time=$(date +%H)

4 if [$time -gt 5] && [$time -lt 12]

5 then

6 echo "Good morning!"

7 elif [$time -gt 12] && [$time -lt 18]

8 then

9 echo "Good evening!"

10 elif [$time -gt 18] && [$time -lt 5]

11 then

12 echo "Good night!"

13 fi

10

	Lecture Overview
	What is Shell Scripting?
	Bash Scripting: Basic Mechanics
	Your Very First Script
	Shebangs
	Running a Script

	Bash Scripting: Variables and Strings
	Variables
	Strings

	Bash Scripting: Control Flow Directives
	If Statements
	While Loops
	For Loops
	Exercise 1

	Bash Scripting: Arguments and Functions
	Arguments
	Functions
	Exercise 2

	Exit Codes and Command Substitution
	Exit Codes
	Exercise 3
	Command Substitution

	Bash Scripting: Other Syntax
	Comparisons
	Exercise 4

