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Announcements

— EE undergrads: EE108A and CS106B
— Everybody else: E40 and CS106B (or equivalent)
« EE 108B Problem Session
— Fridays 2.15pm — 3.05pm, Thornton 102, Live on E4
« HW1 out today
« LAB1 and PA1 out next week
— Make sure you register for the class
— Register at eeclass.stanford.edu/ee108b
« Details about lab arrangements to be announced soon
— Check your email and web page announcements
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Review

* Integrated circuits (Moore’s Law)
— 2X transistors every 18 months
— ~300 million transistors today
— Slowing down due to cost of fabrication plants
* Processors
— Hide complexity of IC design with sequential programming model
— Until recently 60% performance improvement per year
— Slowing sown due to high power, high complexity, and lack of ideas
*  Why study computer design?
— Processors are important
— Good example of digital system with general design principles
— Help write better (fewer bugs, higher performance) programs
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Today’s Topic: MIPS Instruction Set Architecture

Textbook reading
— 2.1-2.6
— Look at how instructions are defined and represented

What is an instruction set architecture (ISA)?
Interplay of C and MIPS ISA
Components of MIPS ISA

— Register operands

— Memory operands

— Arithmetic operations

— Control flow operations
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5 components of any Computer

Computer Keyboard,
Mouse
Processor Memory Devices
) ( Disk
Control Input

)
M

Display
Stored-program concept Printer
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Computers (All Digital Systems)
Are At Their Core Pretty Simple

« Computers only work with binary signals

— Signal on a wire is either 0, or 1
« Usually called a “bit”

— More complex stuff (numbers, characters, strings, pictures)
* Must be built from multiple bits

« Built out of simple logic gates that perform boolean logic
— AND, OR, NOT, ...

« and memory cells that preserve bits over time
— Flip-flops, registers, SRAM cells, DRAM cells, ...

 To get hardware to do anything, need to break it down to bits
— Strings of bits that tell the hardware what to do are called instructions

— A sequence of instructions called machine language program
(machine code)
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Hardware/Software Interface

— 1 Application (Firefox) I—

Operating
Compiler System
Assembler (Linux)

2000202 Instruction Set

| Processor |Memory |IIO system | Architecture

Datapath & Control

v
The Instruction Set Architecture (ISA) defines what instructions do

MIPS, Intel IA32 (x86), Sun SPARC, PowerPC, IBM 390, Intel IA64
— These are all ISAs

Many different implementations can implement same ISA (family)

— 8086, 386, 486, Pentium, Pentium |I, Pentium4 implement 1A32

— Of course they continue to extend it, while maintaining binary compatibility
ISAs last a long time

— x86 has been in use since the 70s

— IBM 390 started as IBM 360 in 60s




MIPS ISA

MIPS — semiconductor company that built one of the first
commercial RISC architectures

— Founded by J. Hennessy

We will study the MIPS architecture in some detail in this
class

 Why MIPS instead of Intel 80x867?
— MIPS is simple, elegant and easy to understand
— x86 is ugly and complicated to explain
— x86 is dominant on desktop

— MIPS is prevalent in embedded applications as
processor core of system on chip (SOC)

Maost HP Laser]et

C. Kozyrakis EE108b Lecture 2 warkgroup printers are
e driven by MIPS-based™

G4-bil processors.




MIPS Processor History

Year Mlg:fel ('I\z;:;():k Instruction Set Cache (I+D) Transistor Count
1987 R2000-16 MIPS | Extt:rgzalzfé’;(“ 115 thousand
1990 R3000-33 e | 120 thousand
1991 R4000-100 MIPS Il 8K+8K 1.35 million
1993 R4400-150 16K+16K 2.3 million
R4600-100 16K+16K 1.9 million
1995 Vr4300-133 16K+8K 1.7 million
1996 R5000-200 MIPS IV 32K + 32K 3.9 million
R10000-200 32K + 32K 6.8 million
1999 R12000-300 32K + 32K 7.2 million
2002 R14000-600 32K + 32K 7.2 million

C. Kozyrakis

EE108b Lecture 2




C vs MIPS | ISA
Programmers Interface

C « MIPSI|ISA
— Variables — Registers (processor state)
* locals « 32 32binteger, RO=0
* globals « 32 32b single FP, 16 64b double FP
— Data types « PC and other special registers
« int, short, char, unsigned — Memory
- float, double  232[inear array of bytes
« Aggregate data types — Data types
* pointers - word(32b), byte(8b), half-
— Operators word(16b),
e +, - * % ++ < efc.  single FP(32b), double FP(64b)
— Control structures — Operators
« If-else, while, do-while, for, switch, * add, sub, Iw, sw, slt, etc.
procedure call, return — Control

« Branches, jumps, jump and link
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Running An Application

High Level Language
Program

Compiler

Assembly Language
Program

Assembler

Machine Language
Program

Control Signal
Specification

C. Kozyrakis

temp = v[Kk];
v[k] = v[k+1];
v[k+1] = temp;

lw $15,
lw $16,
sw $16,
sw $15,
0000 1001
1010 1111

1100 0110
0101 1000

Machine Interpretation

High/Low on control lines
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0($2)
4($2)
0($2)
4($2)

1100 0110
0101 1000
1010 1111
0000 1001

1010
0000
0101
1100

1111
1001
1000
0110

0101
1100
0000
1010

1000
0110
1001
1111
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Why Have Registers?

Memory-memory ISA
— All HLL variables declared in memory
— Why not operate directly on memory operands?
— E.g. Digital Equipment Corp (DEC) VAX ISA
« Benefits of registers
— Smaller is faster
— Multiple concurrent accesses
— Shorter names Load | Store
* Load-Store ISA
— Arithmetic operations only use register operands

— Data is loaded into registers, operated on, and
stored back to memory

_ _ Arithmetic
— All RISC instruction sets unit
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Using Registers

Registers are a finite resource that needs to be managed
— Programmer
— Compiler: register allocation
Goals
— Keep data in registers as much as possible
— Always use data still in registers if possible
Issues

— Finite number of registers available
» Spill registers to memory when all registers in use
— Arrays
« Data is too large to store in registers
What's the impact of fewer or more registers?
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Register Naming

« Registers are identified by a s <num>

« By convention, we also give them names
— $zero contains the hardwired value O
- $v0, $v1 are for results and expression evaluation
— $a0-$a3 are for arguments
— $s0, $sl1, .. $s7 are for save values
- $t0, $tl1l, .. $t9 are for temporary values

— The others will be introduced as appropriate
« See Fig 3.13 p. 140 for details

« Compilers use these conventions to simplify linking
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Assembly Instructions

« The basic type of instruction has four components:
1. Operation name
2. 1st source operand
3. 2nd source operand
4. Destination operand

 add dst, src1, src2 # dst = src1 + src2

« dst, src1, and src2 are register names ($)
« What do these instructions do?

— add $1, $1, $1

— add $1, $1, $1

C. Kozyrakis EE108b Lecture 2
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1:
2: {
3 .
4:
5:
6
7
8
9:
10:

11:}
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int pow2 [8]

int a, ret;

a=>b + c;
if (a < 8)

C Example

int sum pow2(int b, int c)

{1I 2/

ret = pow2[a];

else
ret = 0;
return (ret) ;

EE108b Lecture 2

4,
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16, 32,

64,

128} ;
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Arithmetic Operators

Consider line 5, C operation for addition
a = b + c;
Assume the variables are in registers $1-$3 respectively

The add operator using registers
add $1, $2, $3 # a=>b+ c

Use the sub operator for a=b-c in MIPS
sub $1, $2, $3 # a

I
o
|
Q

But we know that a,b, and c really refer to memory locations
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Complex Operations

What about more complex statements?
a=Db+c+ d - e;

Break into multiple instructions

add $t0, S$sl1l, S$s2 # StO
add $tl, $t0, S$s3 # Stl
sub $s0, $tl, $s4 # a =

C. Kozyrakis EE108b Lecture 2

= b + ¢
= 3$t0 + d
Stl - e
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Signed & Unsigned Number

If given b[n-1:0] in a register or in memory

Unsigned value

n—1
value = Zbl. 2
i=0
Signed value (2's complement)

n—2
value=—(b,_2"")+ Zbl. 2
i=0

C. Kozyrakis EE108b Lecture 2
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Unsigned & Signed Numbers

X unsigned| signed
0000  Example values
0001 — 4 bits
8812 — Unsigned: [0, 24— 1]

_ S . [.923 93 _

0100 Signed: [- 23, 2°-1]
0101 * Equivalence
0110 — Same encodings for non-
0111 negative values

1000 « Uniqueness
1001 — Every bit pattern represents
1812 unique integer value
T100 — Not true with sign magnitude
1101
1110
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Arithmetic Overflow

When the sum of two n-bit numbers can not be represented in n bits

Unsigned Signed
 Wraps Around True Sum
— If true sum = 2" 0 n
— At most once Modular Sum
True Sum 0 U _\ T

i e
o R

Modular Sum 1 n
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Constants

« Often want to be able to specify operand in the instruction: immediate or
literal

« Use the addi instruction

addi dst, srcl, immediate

« The immediate is a 16 bit signed value between -215 and 215-1
« Sign-extended to 32 bits

« Consider the following C code
at++;

« The addi operator
addi S$s0, S$s0, 1 #f a=a+ 1
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MIPS Simple Arithmetic

3 operands; Overflow
3 operands; Overflow
+ constant; Overflow
3 operands; No overflow

3 operands; No overflow

Instruction Example Meaning Comments
add add $1,$2,$3 $1=%2 +$3

subtract sub $1,$2.$3 $1=%2-9%3

add immediate  addi $1,$2,100 $1 =9%2 + 100

add unsigned addu $1,$2,$3 $1=9%2 + $3

subtract unsign subu $1,$2,%$3 $1=%2-$3

add imm unsign addiu $1,$2,100 $1=%$2 + 100

How does C treat overflow?

C. Kozyrakis
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Memory Data Transfer

 Data transfer instructions are used to move data to and from
memory

» Aload operation moves data from a memory location to a register
and a store operation moves data from a register to a memory
location

address (32)

data (32)

load store
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Data Transfer Instructions: Loads

» Data transfer instructions have three parts
— Operator name (transfer size)
— Destination register
— Base register address and constant offset

lw dst, offset (base)

— Offset value is a signed constant

C. Kozyrakis EE108b Lecture 2
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Memory Access

» Aligned words, half-words, and bytes
* Floating Point loads and stores for accessing FP registers
 Displacement based addressing mode

Immediate

Data to
load/

location to
store into

Registers J

\4
v

Base

« All memory access happens through loads and stores

. _______________________________________________________________________________________________________________________________________________________________________________________________________|]
C. Kozyrakis EE108b Lecture 2
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Loading Data Example

Consider the example

a = Db + *cy

Use the 1w instruction to load
Assume a($s0), b($s1), c($s2)

1w $t0, 0(Ss2) # St0 = Memory/[c]
add $s0, $s1, S$tO # a =Db + *c
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Accessing Arrays

Arrays are really pointers to the base address in memory
— Address of element A[0]
Use offset value to indicate which index

Remember that addresses are in bytes, so multiply by the size of the
element

— Consider the integer array where pow?2 is the base address

— With this compiler on this architecture, each int requires 4 bytes
— The data to be accessed is at index 5: pow2 [5]
— Then the address from memory is pow2 + 5 * 4

Unlike C, assembly does not handle pointer arithmetic for you!
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Array Memory Diagram

1032
Lossl—F oOWZ2l,

1024 pOW 2 e
.:KFRJVVE!“W

1020

1012
1008

1004

1000

C. Kozyrakis EE108b Lecture 2



Array Example

Consider the example
a=>b + pow2[7];

Use the 1w instruction offset, assume $s3 = 1000

lw $t0, 28 ($s3) # $t0 = Memory[pow2[7]]
add $s0, $sl, S$tO # a = b + pow2[7]

C. Kozyrakis EE108b Lecture 2
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Complex Array Example

« Consider line 7 from sum_pow?2()
ret = pow2[a];

» First find the correct offset, again assume $s3 = 1000

sll $t0, $s0, 2 # $t0 = 4 * a : shift left by 2
add $tl1, $s3, $tO # $tl = pow2 + 4*a
lw $v0, 0(S$tl) # $v0 = Memory[pow2[a]]
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Storing Data

Storing data is just the reverse and the instruction is nearly identical

Use the sw instruction to copy a word from the source register to an
address in memory

sw src, offset (base)

Offset value is signed

C. Kozyrakis EE108b Lecture 2 32



Storing Data Example

« Consider the example
*a =Db + c;

« Use the sw instruction to store

add $t0, $sl, $s2 # $t0 = b + ¢
sw $t0, 0($s0) # Memory[s0] = b + c

C. Kozyrakis EE108b Lecture 2



Storing to an Array

Consider the example
a[3] = b + c;

Use the sw instruction offset

add $t0, $sl, $s2
sw $t0, 12($s0)
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# Memory[a[3]] = b + ¢
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Complex Array Storage

Consider the example
al[i] = b + c;

Use the sw instruction offset
add $t0, $sl, $s2
sll $t1, $s3, 2
add $t2, $s0, $tl
sw $t0, 0($t2)

C. Kozyrakis

# $St0 = b + ¢

# Stl =4 * i

# St2 = a + 4*i

# Memory[a[i]] = b + ¢

EE108b Lecture 2
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A “short” Array Example

ANSI C requires a short to be at least 16 bits and no longer than an
int, but does not define the exact size

For our purposes, treat a short as 2 bytes
So, with a short array c[7] is atc + 7 * 2, shift left by 1

1016
1014
1012
1010
1008
1006
1004

1002
1000

0
—n
e

Q

ol il

G

Ql0o
2l Ll Lmunl Lams! =

NNIRIENEIRIR

o

[S

Q
—
heid

0

[S]

Q

C. Kozyrakis EE108b Lecture 2 36



MIPS Integer Load/Store

Instruction Example Meaning Comments

store word sw $1, 8($2) Mem[8+$2]=$1 Store word

store half sh $1, 6($2) Mem[6+$2]=$1 Stores only lower 16 bits
store byte sb $1, 5($2) Mem[5+$2]=$1 Stores only lowest byte
store float sf $f1, 4($2) Mem[4+$2]=$f1 Store FP word

load word lw $1, 8($2) $1=Mem[8+$2] Load word

load halfword lh $1, 6($2) $1=Mem[6+$2] Load half; sign extend
load half unsign  lhu $1, 6($2) $1=Mem[8+$2] Load half; zero extend
load byte b $1, 5($2) $1=Mem[5+$2] Load byte; sign extend
load byte unsign lbu $1, 5($2) $1=Mem[5+$2] Load byte; zero extend
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Alignment Restrictions

« In MIPS, data is required to fall on addresses that are multiples of the data
size
o 1 2 3

Aligned I

» Consider word (4 byte) memory access

[ ]
0 4 8 12 16
0 4 8 12 16
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Alignment Restrictions (cont)

« C Example struct foo {

char sm;

What is the size of

) short med;
this structure?

char sml;
int lrg;
}
Byte offset 0 1 2 34 5 78 11
sm| x | med |sml] x 1lrg

« Historically
— Early machines (IBM 360 in 1964 ) required alignment
— Removed in 1970s to reduce impact on programmers
— Reintroduced by RISC to improve performance
« Also introduces challenges with memory organization with virtual memory, etc.
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Memory Mapped /O

 Data transfer instructions can be used to move data to and from |/O
device registers

» A load operation moves data from a an I/O device register to a CPU
register and a store operation moves data from a CPU register to a
I/O device register

address (8)

data (8)

!
| vo register |

1/0 register at address 0x80 (128)
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Changing Control Flow

» One of the distinguishing characteristics of computers is the ability
to evaluate conditions and change control flow

« C

— If-then-else

— Loops

— Case statements
« MIPS

— Conditional branch instructions are known as branches
— Unconditional changes in the control flow are called jumps
— The target of the branch/jump is a label
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C. Kozyrakis

Conditional: Equality

The simplest conditional test is the beg instruction for equality
beq regl, reg2, label

Consider the code
if (a == b) goto L1;
// Do something
Ll: // Continue

Use the beqg instruction
beq $s0, $s1, L1
# Do something
Ll: # Continue

EE108b Lecture 2
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Conditional: Not Equal

The bne instruction for not equal
bne regl, reg2, label

Consider the code
if (a !'= b) goto L1;
// Do something
Ll: // Continue

Use the bne instruction
bne $s0, $sl1l, L1
# Do something
Ll: # Continue

C. Kozyrakis EE108b Lecture 2
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Unconditional: Jumps

The j instruction jumps to a label
J label

C. Kozyrakis EE108b Lecture 2
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Consider the code
if (1 == 3)

else £ = g - h;

C. Kozyrakis

f

If-then-else Example

f=g+h f=g-h

EE108b Lecture 2
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If-then-else Solution

» Create labels and use equality instruction

beq $s3, $s4, True # Branch if i == j
sub $s0, $sl, $s2 # £f=qg-h
j Exit # Go to Exit

True: add $s0, $sl, $s2 # £f=g+h
Exit:
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Other Comparisons

« Other conditional arithmetic operators are useful in evaluating
conditional expressions using <, >, <=, >=

» Register is “set” to 1 when condition is met

« Consider the following C code
if (f < g) goto Less;

« Solution
slt $t0, $s0, Ssl # St0 =1 1if S$Ss0 < S$sl
bne $t0, S$zero, Less # Goto Less 1f $t0 !'= 0
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MIPS Comparisons

Instruction Example Meaning Comments
set less than slt $1, $2, $3 $1=(%2<9%3) comp less than signed
set less than imm slti $1, $2, 100 $1=($2<100) comp w/const signed
set less than uns sltu $1, $2, $3 $1=($2<$3) comp < unsigned
set |I.t. imm. uns sltiu $1, $2, 100 $1= ($2<100) comp < const unsigned
- C

if (a < 8)

« Assembly

slti $vO0, $a0, 8 # Sv0 = a < 8
beqg Sv0,Szero, Exceed # goto Exceed if $v0 == 0
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1:
2: {
3 .
4:
5:
6
7
8
9:
10:

11:}
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int pow2 [8]

int a, ret;

a=>b + c;
if (a < 8)

C Example

int sum pow2(int b, int c)

{1I 2/

ret = pow2[a];

else
ret = 0;
return (ret) ;

EE108b Lecture 2
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sum;pow2:

Exceed:

Return:

C. Kozyrakis

addu
slti
beqg
addiu
sll
addu
1w

addu

jr

$a0,%$a0,$al
$v0,$a0,8

$v0,$zero, Exceed

$vl,$sp, 8
$v0,$a0,2
$v0,$v0,$vl
$v0,0($v0)
Return

$v0,$zero, $zero

ra
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$a0 = b, $al = c
a=b+c, $a0 = a
$Sv0 = a < 8

goto Exceed if $v0 ==
$vl = pow2 address
Sv0 = a*4

$Sv0 = pow2 + a*4

Sv0 = pow2[a]

goto Return

$v0 = 0

return sum;pow2
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