
Lecture 10

Control Hazards and Advanced Pipelining

Christos Kozyrakis

Stanford University

<http://eeclass.stanford.edu/ee108b>

Announcements

- Announcements will be made through email

Review: Pipeline Hazards

- These are dependencies between instructions that are exposed by pipelining
 - Causes pipeline to lose efficiency (pipeline stalls, wasted cycles)
 - If all instructions are dependent
 - No advantage of a pipelining (since all must wait)
- These limits to pipelining are known as hazards
 - Structural Hazard (Resource Conflict)
 - Two instructions need to use the same piece of hardware
 - Data Hazard
 - Instruction depends on result of instruction still in the pipeline
 - Control Hazard
 - Instruction fetch depends on the result of instruction in pipeline

Review: Data Hazard Example

- Dependencies forwards in time are hazard

Forwarding Hardware

- What does forwarding cost?
 - Need to add stuff to datapath and stuff to control
- Datapath
 - Need to add multiplexers to functional units
 - Source to function unit could come from
 - Register file
 - Memory
 - ALU of last cycle
 - ALU from two cycles ago
 - Adding this mux increases the critical path of design
 - Needs to be designed carefully

Discovering Forwarding Paths in Pipelines

- Can get out of hand if not carefull
- Simple procedure
 - Identify all pipeline stages that produce new values
 - In our case, EX and MEM
 - All pipeline stages after the earliest producer can be the source of a forwarded operand
 - In our case, MEM
 - Identify all pipeline stages that really consume values
 - In our case, EX and MEM
 - These stages are the destinations of a forwarded operand
 - Add multiplexor for each pair of source/destination stages

Forward Hardware - Datapath

Forward Hardware - Control

- Need to decide which multiplexer input to enable
 - Doesn't seem that hard but it can get troublesome
 - Especially with machines that issue multiple instructions/cycle
- Which is the correct result
 - Need to tag ALU, MEM results with registerID
 - Need to compare register fetch with tags
 - All this takes hardware, but can be done in parallel
 - Need to find youngest version of the register
 - Multiple tags can match
 - Need to find freshest version of the data

Forward Hardware - Datapath & Control 1

Forward Hardware - Datapath & Control 2

Review: Data Hazard with Forwarding

- Data is not available yet to be forwarded

Review: Hardware Stall

- A *pipeline interlock* checks and stops the *instruction issue*

Hazard Detection 1

Hazard Detection 2 (2 cycles later)

Compilers & Data Hazards

- Compilers rearrange code to try to fill slots with useful stuff
 - Fill load delay slot with a good instruction
 - When successful, the slot has no cost
 - The next instruction does not depend on load result
 - Does not need to stall
 - Show the advantage of the pipeline
 - When can't fill the slot
 - Need to output a NOP if there is no hardware interlock
- Since the pipeline is very machine dependent
 - Need hardware interlocks to run old code
 - Most machines have interlocks!
 - Microprocessor without Interlocked Pipeline Stages

Rearranged Code

- Compiler inserts independent instruction

Control Hazard

- Data Hazard caused by missing data
 - Used by another instruction
- What happens when the missing data is the next PC?
 - This is called a control hazard
- Control hazards:
 - Branch instruction
 - If a branch is not taken then control simply continues with $PC + 4$
 - If the branch is taken, then the PC jumps to a new address
 - Jump instruction
- Causes a greater performance problem than data hazards
 - Instruction fetch happens very early in the pipeline

Pipeline so far (without forwarding and hazard detection)

Branch Control Hazard

Control Hazard Solutions

- Stall
 - Wait until you know the answer
 - But makes CPI of branch large (about 3)
- Predict not-taken
 - Continue to fetch and execute instruction
 - Need to be able to nullify instruction if prediction was wrong
 - Can be tricky, but is not that hard if done correctly
- Predict taken
 - More complex, since need to compute destination
 - Generally this takes some time, so
 - Store destination address prediction with instruction
 - Still need to nullify when wrong
- Most machines do some type of prediction (taken, not-taken)

Branch Control Hazard: Another look (Moving the control point)

Reducing Branch Delay

What is impact on CPI and CCT?

Branch Stall

- Need to stall for one cycle on every branch!
 - ID control point
- Consider the following case
 - The ideal CPI of the machine is 1
 - The branch causes a stall
- What is the new effective CPI if 15% of the instructions are branches?
- The new effective CPI is $1 + 1 \times 0.15 = 1.15$
- The old effective CPI was $1 + 3 \times 0.15 = 1.45$

Delayed Branches

- Solution used in early MIPS machines
 - Had a branch delay of one
 - Branch does not take effect until the cycle after its execution
- Example:

beq r1, r2, L	Branch instruction
sub r4, r1, r3	This operation ALWAYS is executed
and r6, r2, r7	This operation executes if branch fails
- Worked well initially, but now is a pain
 - Compiler can fill one slot 50% of the time
 - Machine have many branch delay slots
 - Issue more than one instruction per cycle
 - Modern machines use branch prediction

Reducing Branch Delay

Exceptions

- Something bad happens to an instruction
 - Need to stop the machine
 - Fix up the problem
 - Start the machine up again
- Definition: precise exceptions
 - All previous instructions had completed
 - The faulting instruction was not started
 - None of the next instructions were started
 - No changes to the architecture state (registers, memory)
- With a single cycle machine, this is easy
 - Why?

Preview: Exceptions and Pipelining

- With a pipelined machine it is a little more complex
 - Need to make sure you can stop the machine precisely
 - Instructions $< j$ complete, $>j$ have no effect on machine
- Most instructions results only go to register file
 - If we prevent their write into the registers
 - Need to prevent results from bypassing too
 - It is like they did not exist
- Complexity comes from instructions that change state earlier
 - Like branches and jumps
 - Need to store old PC values and restore them on exceptions

Overview of First Generation RISC

- Used static scheduling
 - Instructions were ordered by the compiler
 - Hardware does not reorder instructions
- Register write occurs in the first part of the clock cycle
 - Reads are performed in the second half of the clock cycle
 - Simplifies some hazards and eliminates others
- Memory access occurs in the 4th stage
 - Avoids all memory hazards
- RAW hazards use forwarding, except on load results
 - Loads resolved by load delay and stalls
- Control hazards use delayed branch
- Good pipeline performance
 - CPI = 1.1 – 1.5 on integer programs

Computer Architect's Job

- Convert transistors to performance
- Use transistors to
 - Exploit parallelism
 - Or create it (speculate)
- Processor generations
 - Simple machine
 - Reuse hardware
 - Pipelined
 - Separate hardware for each stage
 - Super-scalar
 - Multiple port mems, function units
 - Out-of-order
 - Mega-ports, complex scheduling
 - Speculation
- Each design has more logic to accomplish same task (but faster)

Advanced Pipelining

- Where have all the transistors gone?
 - MIPS R3000 : 120 thousand transistors
 - Intel Pentium 4 : 160 Million transistors
 - Many transistors in the cache
- Fancy techniques to decrease CPI and increase clock frequency
 - Superscalar (multiple instruction execution)
 - Deep pipelining
 - Dynamic scheduling (out-of-order execution)
 - Dynamic branch prediction
 - Register renaming
- All pipelining techniques exploit instruction-level parallelism (ILP)

What is ILP?

- Independence among instructions

- Example with ILP

- add \$t0, \$t1, \$t2
or \$t3, \$t1, \$t2
sub \$t4, \$t1, \$t2
and \$t5, \$t1, \$t2

**ILP in real programs
is limited**

- Example with no ILP

- add \$t0, \$t1, \$t2
or \$t3, \$t0, \$t2
sub \$t4, \$t3, \$t2
and \$t5, \$t4, \$t2

Superscalar

- Fetch and execute multiple instructions per cycle => CPI < 1
- Example: 2-way Superscalar
 - Fetch 2 instructions/clock cycle
 - Decision to execute two instructions handled dynamically
 - Can only execute 2nd instruction if 1st instruction executes (in-order exec.)

<u>Pipe Stages</u>					
	IF	ID	EX	MEM	WB
	IF	ID	EX	MEM	WB
Ideal CPI =	IF	ID	EX	MEM	WB
	IF	ID	EX	MEM	WB
		IF	ID	EX	MEM
		IF	ID	EX	WB

- Resources: double amount of hardware (FUs, Register file ports)
- Issues: hazards, branch delay, load delay

Deeper Pipelining

- Increase number of pipeline stages
 - Fewer levels of logic per pipe stage
 - Higher clock frequency
- Example 9-stage pipeline

Pipe Stages

IF1	IF2	ID	EX	MEM1	MEM2	MEM3	WB	
IF1	IF2	ID	EX	MEM1	MEM2	MEM3	WB	
• Almost double number of pipe stage registers (MIPS R4000)								
• Issues: branch delay, load delay: CPI = 1.4 - 2.0								
• Modern pipelines								
– Pentium 4: 24 stages, 3+ GHz								
– Prescott: 35 stages, 4+ GHz								

Dynamic Branch Prediction

- Predict direction of branches based on past behavior
 - Maintain a table of branch behavior and look up to get prediction
- *Branch prediction buffer* (or *branch history table BHT*)
 - Lower bits of PC address index table of 1 bit values
 - Says whether or not branch taken last time
 - Evaluate actual branch condition and correct if incorrect
 - Recover by flushing pipeline and restarting fetch
 - Reset prediction
 - Branch prediction using 2 bits often more accurate

Dynamic Scheduling

- Execute instructions out-of-order
- Fetch multiple instructions per cycle into instruction queue using branch prediction
- Figure out which are independent and execute them in parallel
- Example
 - add \$t0, \$t1, \$t2
 - or \$t3, \$t0, \$t2
 - sub \$t0, \$t1, \$t2
 - and \$t5, \$t0, \$t2
- Superscalar + Dynamic scheduling
 - add \$t0, \$t1, \$t2 sub \$t0, \$t1, \$t2
 - or \$t3, \$t0, \$t2 and \$t5, \$t0, \$t2
- What's wrong with this?

Register Renaming

- Rename (map) architectural registers to physical registers in decode stage to get rid of false dependencies
- add \$t0, \$t1, \$t2
or \$t3, \$t0, \$t2
sub \$t0, \$t1, \$t2
and \$t5, \$t0, \$t2
- Superscalar + Dynamic scheduling + register renaming
- add \$t0_A, \$t1, \$t2 sub \$t0_B, \$t1, \$t2
or \$t3, \$t0_A, \$t2 and \$t5, \$t0_B, \$t2
- Need more physical registers than architectural registers
- Physical registers are automatically recycled

Dynamic Scheduling in a Modern OOO MIPS R10000

Limits of Advanced Pipelining

- Limited ILP in real programs
- Pipeline overhead
- Limited branch prediction accuracy (85%-98%)
- Memory inefficiency
- Complexity of implementation

Are We Done With Hardware?

- Unfortunately (or fortunately depending on your view) no
 - Still need to talk about the other main hardware piece
 - Memory
- Why talk about memory?
 - Isn't it just a large array of bits?
 - Used to be, but not any more
- Problem:
 - Typically want a lot of memory in your machine
 - Usually hundreds of dollars
 - Since it is expensive, you want the most bits/\$
 - Since the memory price is #1 issue, you have other issues

Five Components

- Datapath
- Control
- **Memory**
- Input
- Output