Lecture 10

Control Hazards and Advanced Pipelinning

Christos Kozyrakis

Stanford University
http://eeclass.stanford.edu/ee108b

C. Kozyrakis EE 108b Lecture 10

Announcements

* Announcements will be made through email

C. Kozyrakis EE 108b Lecture 10

Review: Pipeline Hazards

 These are dependencies between instructions that are exposed by
pipelining
— Causes pipeline to loose efficiency (pipeline stalls, wasted cycles)
— If all instructions are dependent
» No advantage of a pipelining (since all must wait)

* These limits to pipelining are known as hazards
— Structural Hazard (Resource Conflict)
» Two instructions need to use the same piece of hardware
— Data Hazard
 Instruction depends on result of instruction still in the pipeline
— Control Hazard
* Instruction fetch depends on the result of instruction in pipeline

C. Kozyrakis EE 108b Lecture 10 3

S ~ 0 35 ~

S~ 0 Q=0

Review: Data Hazard Example

Dependencies forwards in time are hazard

Time (clock cycles)

add r1,r2,r3

subr4, ,r3
and r6, , r7
orrg, ,r9

xor r10, r1, r11

C. Kozyrakis

IF

Im

ID/RF: ~nEX MEM
[Reg E Dm &
il

EE 108b Lecture 10

__I|
—\Z
Im [[|R i
m eg E
Ed
Im |I|Reg Reg
Im | Dm Reg
% Dm Reg
/

Forwarding Hardware

* What does forwarding cost?
— Need to add stuff to datapath and stuff to control

« Datapath
— Need to add multiplexers to functional units
— Source to function unit could come from
» Register file
 Memory
« ALU of last cycle
« ALU from two cycles ago

— Adding this mux increases the critical path of design
* Needs to be designed carefully

C. Kozyrakis EE 108b Lecture 10

Discovering Forwarding Paths in Pipelines

« Can get out of hand if not carefull

« Simple procedure

— ldentify all pipeline stages that produce new values
* In our case, EX and MEM

— All pipeline stages after the earliest producer can be the source of a
forwarded operand

* In our case, MEM
— Identify all pipeline stages that really consume values

* In our case, EX and MEM
— These stages are the destinations of a forwarded operand

— Add multiplexor for each pair of source/destination stages

C. Kozyrakis EE 108b Lecture 10

Forward Hardware - Datapath

ID/EX EX/MEM MEM/WB

(o)

®— Data

Memory

\ 4

C. Kozyrakis EE 108b Lecture 10

Forward Hardware - Control

* Need to decide which multiplexer input to enable

— Doesn’t seem that hard but it can get troublesome
» Especially with machines that issue multiple instructions/cycle

« Which is the correct result
— Need to tag ALU, MEM results with registerlD
— Need to compare register fetch with tags
 All this takes hardware, but can be done in parallel
— Need to find youngest version of the register

« Multiple tags can match
* Need to find freshest version of the data

C. Kozyrakis EE 108b Lecture 10

Forward Hardware - Datapath & Control 1

a .FI'I"ﬁ'-J-\:|r|'| p—
umnl i
”

MEMAWE
r3
™ i
Cata —_— —— M
u
- X
g
mE "u;l
_— :J . -

C. Kozyrakis EE 108b Lecture 10

Forward Hardware - Datapath & Control 2

EX/MEM
sub r4, rl,

MEMMYE
r3 add rl, r2, r3

i —t

url =
”

C. Kozyrakis

EE 108b Lecture 10

10

Review: Data Hazard with Forwarding

« Data is not available yet to be forwarded

Time (clock cycles)

Iw r1, 0(r2)

subr4, r1, r6

S ~ 0 S ~

and r6, r1, r7

0
g orr8,r1, r9
e
r

C. Kozyrakis

IF ID/RF. N\EX: MEM WB
>
Im [[[Reg| ¥]criDm g
Im | RI__Z km_r Reg
Im [[|Reg AE}\ Dm Reg
L2
Im |I|R g Dm Reg
/ |

EE 108b Lecturé 10

11

S ~ 0 S5 ~

=~ O Q=0

Review: Hardware Stall

A pipeline interlock checks and stops the instruction issue

Time (clock cycles) 1: 2 3 4 5 6
IF ID/RF gx MEM: WB

Iw r1, 0(r2) Im H|Reg[¥ 1:/pm |
subr4, r1, r3 Im | Reg ‘ Dm L Reg

Im : 2 Dm Re
and r6, r1, r7 » g

BN
I [|R D R

orr8,r1, r9 m E "

v

C. Kozyrakis

EE 108b Lecture 10

12

Hazard Detection 1

| |
T -cul-l:?l'l-:-r T Wt Rasa
I : il _"
sub r4, rl, 1w rl, 0(xr2)
r3 g ' T ol e
|- o e M EMWE
i X Jzial :
.:Ej. Iin L = o i [EE S —
m — ™y
s al |
u
- " | |
! E legiwien '-l.-' e | M
- ALY 1
Yy ;} u
e (5] o T 5] Al 5 ¥
Msmary | Duin
I U i memary -
L §
' |-._.-'
|
P10 Rl i Al & i
10 Farggstar 1 = Hﬁ
: ::n.guu.m % o -
Magtsuifal =
FiiD | CREDE Fhagiibin ™ = L Teae _-l
e 'Forwerding T |
h‘ unf [¥

C. Kozyrakis EE 108b Lecture 10 13

C. Kozyrakis

Hazard Detection 2
(2 cycles later)

~ara-f - |
‘- -culrl.:l'l-;-r 2= bt Rasin
il
- sub r4, rl, nop 1w rl, 0(xr2)
3 R
£ r3 AN e EXTMEM
2l pg E
4 i | B - s N 1 MELLAWE
& x :
i et e —l ¥]
3 — o=
— - .
u
' L g |
] lfegisiern -.J.- M &
IEI_ memery || [M X
I— P T S TI'I;'.:I'I A
L §
' |-._.-'
| |
IR0 R R
1) Fegisda i1 _ "
10 Pyl % o :
T 1110 Mapiatui il = |
FIiE | G Pz ™1 == L = —-l
e Forwsrding o |
h‘ |I'|!'| -
EE 108b Lecture 10 14

Compilers & Data Hazards

Compilers rearrange code to try to fill slots with useful stuff
— Fill load delay slot with a good instruction

— When successful, the slot has no cost
* The next instruction does not depend on load result
* Does not need to stall
« Show the advantage of the pipeline

— When can't fill the slot
* Need to output a NOP if there is no hardware interlock

Since the pipeline is very machine dependent
— Need hardware interlocks to run old code
— Most machines have interlocks!
— Microprocessor without Interlocked Pipeline Stages

C. Kozyrakis EE 108b Lecture 10

15

S ~ 0 S5 ~

S 0O Q=0

Rearranged Code

Compiler inserts independent instruction

Time (clock cycles)

IF

Iwr1,0(r2) | m

unrelated instruction

subr4, r1,r3

and r6, r1, r7

orrg, r1, r9

A

C. Kozyrakis

ID/RF \EX MEM: WB
| Reg % Dm [~
- BN
Im || Reg)E Dm N Reg
. N\
>
Im .IR‘);]
il

Reg

~
| &

EE 108b Lecture 10

Im

| 2

Dm

Reg

N7

Reg

16

Control Hazard

Data Hazard caused by missing data
— Used by another instruction

What happens when the missing data is the next PC?
— This is called a control hazard

Control hazards:

— Branch instruction
 If a branch is not taken then control simply continues with PC + 4
* |If the branch is taken, then the PC jumps to a new address

— Jump instruction
Causes a greater performance problem than data hazards
— Instruction fetch happens very early in the pipeline

C. Kozyrakis EE 108b Lecture 10 17

Pipeline so far

without forwarding and hazard detection

C. Kozyrakis

EX/MEM

M

L

LM'EMI\NB

ALUSrc

[15-11]

PCSrc
. ID/_EX
M
u WB
X -
1
| Control M
IF/ID -
Add
4 0]
5
[
9]
o
s Read
—»| Address 2 register 1 Readl__,]
=}
@ Read , data 1
. £ register
Instruction . —_— Registers Read
memory Write data 2
register
Write
| data
Instruction
16 3
[15-0] \ Sign
\ 7l extend
Instruction
[20-16]
Instruction

RegDst

WB
—
Branch
=
£ o
(5] O
= 14
o
- 53
=
Address Read || 1
data
Data M
memol u
i X
Write 0
data
MemRead

EE 108b Lecture 10

18

Branch Control Hazard

Time (clock cycles)

v

beqr1, r2, L

|
subr4, r1, r3

and r6, r2, r7

orr8, r7,r9

L: add r1, r2, r1

C. Kozyrakis

IF ID/RF EX MEM: WB
Im KL Reg % D Reg
1 =
Im |[|Reg)E ‘Dm —|Reg
o=
Im [Reg % Dm Reg
I
Im II;Reg E —~-(Dm Reg
Im |[|Reg % I Dm Reg

EE 108b Lecture 10

19

Control Hazard Solutions

Stall

— Wait until you know the answer

— But makes CPI of branch large (about 3)
Predict not-taken

— Continue to fetch and execute instruction

— Need to be able to nullify instruction if prediction was wrong
» Can be tricky, but is not that hard if done correctly

Predict taken

— More complex, since need to compute destination
» Generally this takes some time, so
» Store destination address prediction with instruction

— Still need to nullify when wrong
Most machines do some type of prediction (taken, not-taken)

C. Kozyrakis EE 108b Lecture 10

20

Branch Control Hazard: Another look
(Moving the control point)

Time (clock cycles)

v

IF ID/RF EX MEM WB
BN
beqr1, r2, L Im [:[|Reg é Dm 1~ Reg
| __
subr4,r1,r3 Im |4 Reg|: = | Dm |Reg
— I =
and r6, r2, r7 fm] Reg)} Dm | Reg
orr8,r7,r9 Im || Reg)} Dm
J J 7 (
L: add r1, r2, r1 im | e % —
—Ié——

C. Kozyrakis EE 108b Lecture 10

Reducing Branch Delay

=13, —lr—
S,
L]
L EXM
i“:
||||||| = | u L
D] i | |
r— T
o llihl'r T .
(CLF |—¥—|.- —if
4 + [. ; -|-| 1 X
T | i Bagatars L 1 3)
b malrEgn . \ AL
g . BTy 3 ~
; I |u
rm | o E——
o | 8| .
i .. '.‘-"
| BEgn
aEied |
|
I]
| =
¥ 1

What is impact on CPI

and CCT?

C. Kozyrakis EE 108b Lecture 10

22

Branch Stall

Need to stall for one cycle on every branch!
— ID control point

Consider the following case
— The ideal CPI of the machine is 1
— The branch causes a stall
What is the new effective CPI if 15% of the instructions are branches?

The new effective CPlis1+1x0.15=1.15

The old effective CPlwas 1 + 3 x0.15=1.45

C. Kozyrakis EE 108b Lecture 10

23

Delayed Branches

Solution used in early MIPS machines
— Had a branch delay of one

— Branch does not take effect until the cycle after its execution
Example:

beqr1, r2, L Branch instruction
subr4, r1, r3 This operation ALWAYS is executed
and ro, r2, r7/ This operation executes if branch fails

Worked well initially, but now is a pain

— Compiler can fill one slot 50% of the time
— Machine have many branch delay slots

— Issue more than one instruction per cycle
— Modern machines use branch prediction

C. Kozyrakis EE 108b Lecture 10

24

Reducing Branch Delay

Has |
bain —
T ir
S,
% E EXiEM
{ |
w B
ol = | uy M EXMEM
e o
== IFak -l L ¥ e) |
- 3
- |5his 1 N
(1 F |—¥—|.- |
AN | ——— L
| | | ¥ %,
i = —_—
L win Wt
i b O I P =) o \J t oLy o e |
: | " TR - LLLil L)
]
e
ey --l]
i (1 -._-'I
| BeEgn | t
(retend
- u
2 ‘ L] L]
| — B | 5| Ll — I
S 3 =
add $1, $2, $3

bne $1, $4, label

C. Kozyrakis EE 108b Lecture 10

Exceptions

Something bad happens to an instruction
— Need to stop the machine
— Fix up the problem
— Start the machine up again

Definition: precise exceptions
— All previous instructions had completed
— The faulting instruction was not started

— None of the next instructions were started
» No changes to the architecture state (registers, memory)

With a single cycle machine, this is easy
— Why?

C. Kozyrakis EE 108b Lecture 10

26

Preview: Exceptions and Pipelining

With a pipelined machine it is a little more complex

— Need to make sure you can stop the machine precisely
* Instructions < j complete, >j have not effect on machine

Most instructions results only go to register file

— If we prevent their write into the registers
» Need to prevent results from bypassing too

— It is like they did not exist
Complexity comes from instructions that change state earlier

— Like branches and jumps
— Need to store old PC values and restore them on exceptions

C. Kozyrakis EE 108b Lecture 10

27

Overview of First Generation RISC

Used static scheduling
— Instructions were ordered by the compiler
— Hardware does not reorder instructions
Register write occurs in the first part of the clock cycle
— Reads are performed in the second half of the clock cycle
— Simplifies some hazards and eliminates others
Memory access occurs in the 4th stage
— Avoids all memory hazards
RAW hazards use forwarding, except on load results
— Loads resolved by load delay and stalls
Control hazards use delayed branch
Good pipeline performance
— CPI=1.1-1.50n integer programs

C. Kozyrakis EE 108b Lecture 10 28

Computer Architect’s Job

« Convert transistors to performance

» Use transistors to 70’ s
— Exploit parallelism
— Or create it (speculate)

* Processor generations

— Simple machine Early
* Reuse hardware 80's
— Pipelined
» Separate hardware for each stage
— Super-scalar late

« Multiple port mems, function units 80’ s
— OQOut-of-order

» Mega-ports, complex scheduling
— Speculation Mid

* Each design has more logic to accom@i@hs
same task (but faster)

C. Kozyrakis EE 108b Lecture 10 29

Advanced Pipelining

* Where have all the transistors gone?
— MIPS R3000 : 120 thousand transistors
— Intel Pentium 4 : 160 Million transistors
— Many transistors in the cache

* Fancy techniques to decrease CPI and increase clock frequency
— Superscalar (multiple instruction execution)
— Deep pipelining
— Dynamic scheduling (out-of-order execution)
— Dynamic branch prediction
— Register renaming
» All pipelining techniques exploit instruction-level parallelism (ILP)

C. Kozyrakis EE 108b Lecture 10

What is ILP?

* Independence among instructions

 Example with ILP

e add $t0, stl, s$t2
or St3, S$tl, $t2
sub $t4, S$tl, S$St2
and S$tb5, S$tl, $t2

ILP in real programs
is limited

 Example with no ILP

e add $t0, $tl, $t2
or $t3, S$t0, $t2
sub $t4, $t3, $t2
and $tb5, $t4, St2

C. Kozyrakis EE 108b Lecture 10

Superscalar

* Fetch and execute multiple instructions per cycle => CPI < 1

« Example: 2-way Superscalar
— Fetch 2 instructions/clock cycle
— Decision to execute two instructions handled dynamically
— Can only execute 2nd instruction if 1st instruction executes (in-order exec.)

Pipe Stages

IF ID EX MEM WB
IF ID EX MEM wWB
Ideal CPI = IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

» Resources: double amount of hardware (FUs, Register file ports)
* Issues: hazards, branch delay, load delay

C. Kozyrakis EE 108b Lecture 10

Deeper Pipelining

* Increase number of pipeline stages
— Fewer levels of logic per pipe stage
— Higher clock frequency

« Example 9-stage pipeline

Pipe Stages
IF1 IF2 ID EX MEM1 MEM2 MEM3 WB

IF1 IF2 ID EX MEM1 MEM2 MEM3 WB
« Almost double number of pipe stage registers (MIPS R4000)

» Issues: branch delay, load delay: CPI=1.4-2.0
 Modern pipelines

— Pentium 4: 24 stages, 3+ GHz

— Prescott: 35 stages, 4+ GHz

C. Kozyrakis EE 108b Lecture 10 33

Dynamic Branch Prediction

Predict direction of branches based on past behavior

— Maintain a table of branch behavior and look up to get prediction
Branch prediction buffer (or branch history table BHT)

— Lower bits of PC address index table of 1 bit values

— Says whether or not branch taken last time

— Evaluate actual branch condition and correct if incorrect
» Recover by flushing pipeline and restarting fetch
* Reset prediction

— Branch prediction using 2 bits often more accurate

Pipe Stages
bne IF1 IF2 ID EX

S IF IF2 ID EX

BAT

C. Kozyrakis EE 108b Lecture 10 34

Dynamic Scheduling

Execute instructions out-of-order

Fetch multiple instructions per cycle into instruction queue using

branch prediction

Figure out which are independent and execute them in parallel

Example

add $t0, Stl, $t2

or S$t3, $t0, $t2

sub $t0, $tl, St2

and $t5, $t0, $t2
Superscalar + Dynamic scheduling

add s$t0, Stl, $t2 sub $t0,
or S$t3, St0, $t2 and $t5,

What's wrong with this?

C. Kozyrakis EE 108b Lecture 10

stl, St2
$t0, $t2

35

Register Renaming

Rename (map) architectural registers to physical registers in
decode stage to get rid of false dependencies

add $t0, $tl, $t2
or $t3, $t0, S$t2
sub $t0, Stl, $t2
and St5, $t0, $t2
Superscalar + Dynamic scheduling + register renaming

add $t0,, $tl, $t2 sub $t0,, $tl, $t2
or $t3, $t0,, $t2 and $t5, $t0,, $t2

Need more physical registers than architectural registers
Physical registers are automatically recycled

C. Kozyrakis EE 108b Lecture 10

36

Dynamic Scheduling in a Modern OOO
MIPS R10000

—
|

> IN ORDER

}ooo

A A A A A A
A 4 A 4 A 4 A A 4 A 4

C. Kozyrakis EE 108b Lecture 10 37

Limits of Advanced Pipelining

Limited ILP in real programs

Pipeline overhead

Limited branch prediction accuracy (85%-98%)
Memory inefficiency

Complexity of implementation

C. Kozyrakis EE 108b Lecture 10

38

Are We Done With Hardware?

Unfortunately (or fortunately depending on your view) no
— Still need to talk about the other main hardware piece
— Memory

Why talk about memory?

— Isn’tit just a large array of bits?
» Used to be, but not any more

Problem:

— Typically want a lot of memory in your machine
« Usually hundreds of dollars
 Since it is expensive, you want the most bits/$

— Since the memory price is #1 issue, you have other issues

C. Kozyrakis EE 108b Lecture 10

39

Five Components

Computer eDatapath
Processor Devices
eControl
‘ Control l Input eMemory
‘Datapath l Output *Input
eQutput

C. Kozyrakis EE 108b Lecture 10 40

