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Announcements

* Announcements will be made through email
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Review: Pipeline Hazards

 These are dependencies between instructions that are exposed by
pipelining
— Causes pipeline to loose efficiency (pipeline stalls, wasted cycles)
— If all instructions are dependent
» No advantage of a pipelining (since all must wait)

* These limits to pipelining are known as hazards
— Structural Hazard (Resource Conflict)
» Two instructions need to use the same piece of hardware
— Data Hazard
 Instruction depends on result of instruction still in the pipeline
— Control Hazard
* Instruction fetch depends on the result of instruction in pipeline
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Review: Data Hazard Example

Dependencies forwards in time are hazard

Time (clock cycles)

add r1,r2,r3

subr4,  ,r3
and r6, , r7
orrg, ,r9

xor r10, r1, r11
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Forwarding Hardware

* What does forwarding cost?
— Need to add stuff to datapath and stuff to control

« Datapath
— Need to add multiplexers to functional units
— Source to function unit could come from
» Register file
 Memory
« ALU of last cycle
« ALU from two cycles ago

— Adding this mux increases the critical path of design
* Needs to be designed carefully
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Discovering Forwarding Paths in Pipelines

« Can get out of hand if not carefull

« Simple procedure

— ldentify all pipeline stages that produce new values
* In our case, EX and MEM

— All pipeline stages after the earliest producer can be the source of a
forwarded operand

* In our case, MEM
— Identify all pipeline stages that really consume values

* In our case, EX and MEM
— These stages are the destinations of a forwarded operand

— Add multiplexor for each pair of source/destination stages
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Forward Hardware - Datapath

ID/EX EX/MEM MEM/WB
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Forward Hardware - Control

* Need to decide which multiplexer input to enable

— Doesn’t seem that hard but it can get troublesome
» Especially with machines that issue multiple instructions/cycle

« Which is the correct result
— Need to tag ALU, MEM results with registerlD
— Need to compare register fetch with tags
 All this takes hardware, but can be done in parallel
— Need to find youngest version of the register

« Multiple tags can match
* Need to find freshest version of the data
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Forward Hardware - Datapath & Control 1

a .FI'I"ﬁ'-J-\:|r|'| p—
umnl i
”

MEMAWE
r3
™ i
Cata —_—  —— M
u
- X
g
mE "u;l
_— :J . -

C. Kozyrakis EE 108b Lecture 10




Forward Hardware - Datapath & Control 2

EX/MEM
sub r4, rl,

MEMMYE
r3 add rl, r2, r3
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Review: Data Hazard with Forwarding

« Data is not available yet to be forwarded

Time (clock cycles)

Iw r1, 0(r2)

subr4, r1, r6

S ~ 0 S ~

and r6, r1, r7

0
g orr8,r1, r9
e
r
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Review: Hardware Stall

A pipeline interlock checks and stops the instruction issue

Time (clock cycles) 1: 2 3 4 5 6
IF ID/RF gx MEM: WB

Iw r1, 0(r2) Im H|Reg[ ¥ 1:/pm |
subr4, r1, r3 Im | Reg ‘ Dm L Reg

Im : 2 Dm Re
and r6, r1, r7 » g

BN
I [|R D R

orr8,r1, r9 m E "

v
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Hazard Detection 1
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Hazard Detection 2
(2 cycles later)
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Compilers & Data Hazards

Compilers rearrange code to try to fill slots with useful stuff
— Fill load delay slot with a good instruction

— When successful, the slot has no cost
* The next instruction does not depend on load result
* Does not need to stall
« Show the advantage of the pipeline

— When can't fill the slot
* Need to output a NOP if there is no hardware interlock

Since the pipeline is very machine dependent
— Need hardware interlocks to run old code
— Most machines have interlocks!
— Microprocessor without Interlocked Pipeline Stages
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Rearranged Code

Compiler inserts independent instruction

Time (clock cycles)

IF

Iwr1,0(r2) | m

unrelated instruction

subr4, r1,r3

and r6, r1, r7

orrg, r1, r9

A

C. Kozyrakis

ID/RF \EX MEM:  WB
| Reg % Dm [~
- BN
Im || Reg )E Dm N Reg
. N\
>
Im .IR‘ );]
il

Reg

~
| &

EE 108b Lecture 10

Im

| 2

Dm

Reg

N7

Reg

16




Control Hazard

Data Hazard caused by missing data
— Used by another instruction

What happens when the missing data is the next PC?
— This is called a control hazard

Control hazards:

— Branch instruction
 If a branch is not taken then control simply continues with PC + 4
* |If the branch is taken, then the PC jumps to a new address

— Jump instruction
Causes a greater performance problem than data hazards
— Instruction fetch happens very early in the pipeline

C. Kozyrakis EE 108b Lecture 10 17



Pipeline so far

without forwarding and hazard detection
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Branch Control Hazard

Time (clock cycles)

v

beqr1, r2, L

|
subr4, r1, r3

and r6, r2, r7

orr8, r7,r9

L: add r1, r2, r1
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Control Hazard Solutions

Stall

— Wait until you know the answer

— But makes CPI of branch large (about 3)
Predict not-taken

— Continue to fetch and execute instruction

— Need to be able to nullify instruction if prediction was wrong
» Can be tricky, but is not that hard if done correctly

Predict taken

— More complex, since need to compute destination
» Generally this takes some time, so
» Store destination address prediction with instruction

— Still need to nullify when wrong
Most machines do some type of prediction (taken, not-taken)
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Branch Control Hazard: Another look
(Moving the control point)

Time (clock cycles)

v

IF ID/RF EX MEM WB
BN
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Reducing Branch Delay
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What is impact on CPI

and CCT?

C. Kozyrakis EE 108b Lecture 10

22



Branch Stall

Need to stall for one cycle on every branch!
— ID control point

Consider the following case
— The ideal CPI of the machine is 1
— The branch causes a stall
What is the new effective CPI if 15% of the instructions are branches?

The new effective CPlis1+1x0.15=1.15

The old effective CPlwas 1 + 3 x0.15=1.45
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Delayed Branches

Solution used in early MIPS machines
— Had a branch delay of one

— Branch does not take effect until the cycle after its execution
Example:

beqr1, r2, L Branch instruction
subr4, r1, r3 This operation ALWAYS is executed
and ro, r2, r7/ This operation executes if branch fails

Worked well initially, but now is a pain

— Compiler can fill one slot 50% of the time
— Machine have many branch delay slots

— Issue more than one instruction per cycle
— Modern machines use branch prediction
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Reducing Branch Delay
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Exceptions

Something bad happens to an instruction
— Need to stop the machine
— Fix up the problem
— Start the machine up again

Definition: precise exceptions
— All previous instructions had completed
— The faulting instruction was not started

— None of the next instructions were started
» No changes to the architecture state (registers, memory)

With a single cycle machine, this is easy
— Why?
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Preview: Exceptions and Pipelining

With a pipelined machine it is a little more complex

— Need to make sure you can stop the machine precisely
* Instructions < j complete, >j have not effect on machine

Most instructions results only go to register file

— If we prevent their write into the registers
» Need to prevent results from bypassing too

— It is like they did not exist
Complexity comes from instructions that change state earlier

— Like branches and jumps
— Need to store old PC values and restore them on exceptions
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Overview of First Generation RISC

Used static scheduling
— Instructions were ordered by the compiler
— Hardware does not reorder instructions
Register write occurs in the first part of the clock cycle
— Reads are performed in the second half of the clock cycle
— Simplifies some hazards and eliminates others
Memory access occurs in the 4th stage
— Avoids all memory hazards
RAW hazards use forwarding, except on load results
— Loads resolved by load delay and stalls
Control hazards use delayed branch
Good pipeline performance
— CPI=1.1-1.50n integer programs
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Computer Architect’s Job

« Convert transistors to performance

» Use transistors to 70’ s
— Exploit parallelism
— Or create it (speculate)

* Processor generations

— Simple machine Early
* Reuse hardware 80's
— Pipelined
» Separate hardware for each stage
— Super-scalar late

« Multiple port mems, function units 80’ s
— OQOut-of-order

» Mega-ports, complex scheduling
— Speculation Mid

* Each design has more logic to accom@i@hs
same task (but faster)
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Advanced Pipelining

* Where have all the transistors gone?
— MIPS R3000 : 120 thousand transistors
— Intel Pentium 4 : 160 Million transistors
— Many transistors in the cache

* Fancy techniques to decrease CPI and increase clock frequency
— Superscalar (multiple instruction execution)
— Deep pipelining
— Dynamic scheduling (out-of-order execution)
— Dynamic branch prediction
— Register renaming
» All pipelining techniques exploit instruction-level parallelism (ILP)
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What is ILP?

* Independence among instructions

 Example with ILP

e add $t0, stl, s$t2
or St3, S$tl, $t2
sub $t4, S$tl, S$St2
and S$tb5, S$tl, $t2

ILP in real programs
is limited

 Example with no ILP

e add $t0, $tl, $t2
or $t3, S$t0, $t2
sub $t4, $t3, $t2
and $tb5, $t4, St2
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Superscalar

* Fetch and execute multiple instructions per cycle => CPI < 1

« Example: 2-way Superscalar
— Fetch 2 instructions/clock cycle
— Decision to execute two instructions handled dynamically
— Can only execute 2nd instruction if 1st instruction executes (in-order exec.)

Pipe Stages

IF ID EX MEM WB
IF ID EX MEM wWB
Ideal CPI = IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB
IF ID EX MEM WB

» Resources: double amount of hardware (FUs, Register file ports)
* Issues: hazards, branch delay, load delay
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Deeper Pipelining

* Increase number of pipeline stages
— Fewer levels of logic per pipe stage
— Higher clock frequency

« Example 9-stage pipeline

Pipe Stages
IF1 IF2 ID EX MEM1 MEM2 MEM3 WB

IF1 IF2 ID EX MEM1 MEM2 MEM3 WB
« Almost double number of pipe stage registers (MIPS R4000)

» Issues: branch delay, load delay: CPI=1.4-2.0
 Modern pipelines

— Pentium 4: 24 stages, 3+ GHz

— Prescott: 35 stages, 4+ GHz
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Dynamic Branch Prediction

Predict direction of branches based on past behavior

— Maintain a table of branch behavior and look up to get prediction
Branch prediction buffer (or branch history table BHT)

— Lower bits of PC address index table of 1 bit values

— Says whether or not branch taken last time

— Evaluate actual branch condition and correct if incorrect
» Recover by flushing pipeline and restarting fetch
* Reset prediction

— Branch prediction using 2 bits often more accurate

Pipe Stages
bne IF1 IF2 ID EX

S IF IF2 ID EX

BAT
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Dynamic Scheduling

Execute instructions out-of-order

Fetch multiple instructions per cycle into instruction queue using

branch prediction

Figure out which are independent and execute them in parallel

Example

add $t0, Stl, $t2

or S$t3, $t0, $t2

sub $t0, $tl, St2

and $t5, $t0, $t2
Superscalar + Dynamic scheduling

add s$t0, Stl, $t2 sub $t0,
or S$t3, St0, $t2 and $t5,

What's wrong with this?
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Register Renaming

Rename (map) architectural registers to physical registers in
decode stage to get rid of false dependencies

add $t0, $tl, $t2
or $t3, $t0, S$t2
sub $t0, Stl, $t2
and St5, $t0, $t2
Superscalar + Dynamic scheduling + register renaming

add $t0,, $tl, $t2 sub $t0,, $tl, $t2
or $t3, $t0,, $t2 and $t5, $t0,, $t2

Need more physical registers than architectural registers
Physical registers are automatically recycled
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Dynamic Scheduling in a Modern OOO
MIPS R10000

—
|

> IN ORDER
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A 4 A 4 A 4 A A 4 A 4
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Limits of Advanced Pipelining

Limited ILP in real programs

Pipeline overhead

Limited branch prediction accuracy (85%-98%)
Memory inefficiency

Complexity of implementation
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Are We Done With Hardware?

Unfortunately (or fortunately depending on your view) no
— Still need to talk about the other main hardware piece
— Memory

Why talk about memory?

— Isn’tit just a large array of bits?
» Used to be, but not any more

Problem:

— Typically want a lot of memory in your machine
« Usually hundreds of dollars
 Since it is expensive, you want the most bits/$

— Since the memory price is #1 issue, you have other issues
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Five Components

Computer eDatapath
Processor Devices
eControl
‘ Control l Input eMemory
‘Datapath l Output *Input
eQutput
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