
EE 108b Lecture 10C. Kozyrakis 1

Lecture 10

Control Hazards and Advanced Pipelinning

Christos Kozyrakis

Stanford University
http://eeclass.stanford.edu/ee108b

EE 108b Lecture 10C. Kozyrakis 2

Announcements

• Announcements will be made through email

EE 108b Lecture 10C. Kozyrakis 3

Review: Pipeline Hazards

• These are dependencies between instructions that are exposed by
pipelining

– Causes pipeline to loose efficiency (pipeline stalls, wasted cycles)

– If all instructions are dependent

• No advantage of a pipelining (since all must wait)

• These limits to pipelining are known as hazards

– Structural Hazard (Resource Conflict)

• Two instructions need to use the same piece of hardware

– Data Hazard

• Instruction depends on result of instruction still in the pipeline

– Control Hazard

• Instruction fetch depends on the result of instruction in pipeline

EE 108b Lecture 10C. Kozyrakis 4

Reg

Review: Data Hazard Example

• Dependencies forwards in time are hazard

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

add r1,r2,r3

sub r4, r1, r3

and r6, r1, r7

or r8, r1, r9

xor r10, r1, r11

IF ID/RF EX MEM WBA
L
UIm Reg Dm

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

Im

A
L
UReg Dm Reg

A
L
UIm Reg Dm Reg

EE 108b Lecture 10C. Kozyrakis 5

Forwarding Hardware

• What does forwarding cost?

– Need to add stuff to datapath and stuff to control

• Datapath

– Need to add multiplexers to functional units

– Source to function unit could come from

• Register file

• Memory

• ALU of last cycle

• ALU from two cycles ago

– Adding this mux increases the critical path of design

• Needs to be designed carefully

EE 108b Lecture 10C. Kozyrakis 6

Discovering Forwarding Paths in Pipelines

• Can get out of hand if not carefull

• Simple procedure

– Identify all pipeline stages that produce new values
• In our case, EX and MEM

– All pipeline stages after the earliest producer can be the source of a
forwarded operand
• In our case, MEM

– Identify all pipeline stages that really consume values
• In our case, EX and MEM

– These stages are the destinations of a forwarded operand

– Add multiplexor for each pair of source/destination stages

EE 108b Lecture 10C. Kozyrakis 7

Forward Hardware - Datapath

ID/EX EX/MEM MEM/WB

Data

Memory

A
L
U

MuxB

MuxA

EE 108b Lecture 10C. Kozyrakis 8

Forward Hardware - Control

• Need to decide which multiplexer input to enable

– Doesn’t seem that hard but it can get troublesome

• Especially with machines that issue multiple instructions/cycle

• Which is the correct result

– Need to tag ALU, MEM results with registerID

– Need to compare register fetch with tags

• All this takes hardware, but can be done in parallel

– Need to find youngest version of the register

• Multiple tags can match

• Need to find freshest version of the data

EE 108b Lecture 10C. Kozyrakis 9

Forward Hardware - Datapath & Control 1

add r1, r2, r3sub r4, r1,

r3

EE 108b Lecture 10C. Kozyrakis 10

Forward Hardware - Datapath & Control 2

add r1, r2, r3sub r4, r1, r3or r6, r1, r7

EE 108b Lecture 10C. Kozyrakis 11

Review: Data Hazard with Forwarding

• Data is not available yet to be forwarded

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw r1, 0(r2)

sub r4, r1, r6

and r6, r1, r7

or r8, r1, r9

IF ID/RF EX MEM WBA
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

Im

A
L
UReg Dm Reg

EE 108b Lecture 10C. Kozyrakis 12

Review: Hardware Stall

• A pipeline interlock checks and stops the instruction issue

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles) 1 2 3 4 5 6

lw r1, 0(r2)

sub r4, r1, r3

IF ID/RF EX MEM WBA
L
UIm Reg Dm Reg

Im

and r6, r1, r7

or r8, r1, r9

A
L
UReg Dm Reg

A
L
UIm Reg Dm Reg

Im

A
L
UReg Dm Reg

bubble

bubble

EE 108b Lecture 10C. Kozyrakis 13

Hazard Detection 1

lw r1, 0(r2)sub r4, r1,

r3

EE 108b Lecture 10C. Kozyrakis 14

Hazard Detection 2
(2 cycles later)

lw r1, 0(r2)sub r4, r1,

r3

nop

EE 108b Lecture 10C. Kozyrakis 15

Compilers & Data Hazards

• Compilers rearrange code to try to fill slots with useful stuff

– Fill load delay slot with a good instruction

– When successful, the slot has no cost

• The next instruction does not depend on load result

• Does not need to stall

• Show the advantage of the pipeline

– When can’t fill the slot

• Need to output a NOP if there is no hardware interlock

• Since the pipeline is very machine dependent

– Need hardware interlocks to run old code

– Most machines have interlocks!

– Microprocessor without Interlocked Pipeline Stages

EE 108b Lecture 10C. Kozyrakis 16

Rearranged Code

• Compiler inserts independent instruction

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw r1, 0(r2)

sub r4, r1, r3

IF ID/RF EX MEM WB

unrelated instruction

and r6, r1, r7

or r8, r1, r9

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

Im

A
L
UReg Dm Reg

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

EE 108b Lecture 10C. Kozyrakis 17

Control Hazard

• Data Hazard caused by missing data

– Used by another instruction

• What happens when the missing data is the next PC?

– This is called a control hazard

• Control hazards:

– Branch instruction

• If a branch is not taken then control simply continues with PC + 4

• If the branch is taken, then the PC jumps to a new address

– Jump instruction

• Causes a greater performance problem than data hazards

– Instruction fetch happens very early in the pipeline

EE 108b Lecture 10C. Kozyrakis 18

Pipeline so far
(without forwarding and hazard detection)

PC

Instruction
memory

In
s
t r
u c
tio
n

Add

Instruction
[20– 16]

M
e
m
to
R
e
g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15–0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e
g
W
ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e
m
W
ri
te

Address

Data
memory

Address

EE 108b Lecture 10C. Kozyrakis 19

Branch Control Hazard

Time (clock cycles)

beq r1, r2, L

sub r4, r1, r3

and r6, r2, r7

or r8, r7, r9

L: add r1, r2, r1

IF ID/RF EX MEM WB

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

Im

A
L
UReg Dm Reg

Im

A
L
UReg Dm Reg

EE 108b Lecture 10C. Kozyrakis 20

Control Hazard Solutions

• Stall

– Wait until you know the answer

– But makes CPI of branch large (about 3)

• Predict not-taken

– Continue to fetch and execute instruction

– Need to be able to nullify instruction if prediction was wrong

• Can be tricky, but is not that hard if done correctly

• Predict taken

– More complex, since need to compute destination

• Generally this takes some time, so

• Store destination address prediction with instruction

– Still need to nullify when wrong

• Most machines do some type of prediction (taken, not-taken)

EE 108b Lecture 10C. Kozyrakis 21

Branch Control Hazard: Another look
(Moving the control point)

beq r1, r2, L

sub r4, r1, r3

and r6, r2, r7

or r8, r7, r9

L: add r1, r2, r1

IF ID/RF EX MEM WB

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

Im

A
L
UReg Dm Reg

Im

A
L
UReg Dm Reg

Time (clock cycles)

EE 108b Lecture 10C. Kozyrakis 22

Reducing Branch Delay

What is impact on CPI

and CCT?

EE 108b Lecture 10C. Kozyrakis 23

Branch Stall

• Need to stall for one cycle on every branch!

– ID control point

• Consider the following case

– The ideal CPI of the machine is 1

– The branch causes a stall

• What is the new effective CPI if 15% of the instructions are branches?

• The new effective CPI is 1 + 1 × 0.15 = 1.15

• The old effective CPI was 1 + 3 × 0.15 = 1.45

EE 108b Lecture 10C. Kozyrakis 24

Delayed Branches

• Solution used in early MIPS machines

– Had a branch delay of one

– Branch does not take effect until the cycle after its execution

• Example:

beq r1, r2, L Branch instruction
sub r4, r1, r3 This operation ALWAYS is executed

and r6, r2, r7 This operation executes if branch fails

• Worked well initially, but now is a pain

– Compiler can fill one slot 50% of the time

– Machine have many branch delay slots

– Issue more than one instruction per cycle

– Modern machines use branch prediction

EE 108b Lecture 10C. Kozyrakis 25

Reducing Branch Delay

add $1, $2, $3

bne $1, $4, label

EE 108b Lecture 10C. Kozyrakis 26

Exceptions

• Something bad happens to an instruction

– Need to stop the machine

– Fix up the problem

– Start the machine up again

• Definition: precise exceptions

– All previous instructions had completed

– The faulting instruction was not started

– None of the next instructions were started
• No changes to the architecture state (registers, memory)

• With a single cycle machine, this is easy

– Why?

EE 108b Lecture 10C. Kozyrakis 27

Preview: Exceptions and Pipelining

• With a pipelined machine it is a little more complex

– Need to make sure you can stop the machine precisely

• Instructions < j complete, >j have not effect on machine

• Most instructions results only go to register file

– If we prevent their write into the registers

• Need to prevent results from bypassing too

– It is like they did not exist

• Complexity comes from instructions that change state earlier

– Like branches and jumps

– Need to store old PC values and restore them on exceptions

EE 108b Lecture 10C. Kozyrakis 28

Overview of First Generation RISC

• Used static scheduling

– Instructions were ordered by the compiler

– Hardware does not reorder instructions

• Register write occurs in the first part of the clock cycle

– Reads are performed in the second half of the clock cycle

– Simplifies some hazards and eliminates others

• Memory access occurs in the 4th stage

– Avoids all memory hazards

• RAW hazards use forwarding, except on load results

– Loads resolved by load delay and stalls

• Control hazards use delayed branch

• Good pipeline performance

– CPI = 1.1 – 1.5 on integer programs

EE 108b Lecture 10C. Kozyrakis 29

Computer Architect’s Job

• Convert transistors to performance

• Use transistors to

– Exploit parallelism

– Or create it (speculate)

• Processor generations

– Simple machine

• Reuse hardware

– Pipelined

• Separate hardware for each stage

– Super-scalar

• Multiple port mems, function units

– Out-of-order

• Mega-ports, complex scheduling

– Speculation

• Each design has more logic to accomplish
same task (but faster)

70’s

Early

80’s

late

80’s

Mid

90’s

EE 108b Lecture 10C. Kozyrakis 30

Advanced Pipelining

• Where have all the transistors gone?

– MIPS R3000 : 120 thousand transistors

– Intel Pentium 4 : 160 Million transistors

– Many transistors in the cache

• Fancy techniques to decrease CPI and increase clock frequency

– Superscalar (multiple instruction execution)

– Deep pipelining

– Dynamic scheduling (out-of-order execution)

– Dynamic branch prediction

– Register renaming

• All pipelining techniques exploit instruction-level parallelism (ILP)

EE 108b Lecture 10C. Kozyrakis 31

What is ILP?

• Independence among instructions

• Example with ILP
• add $t0, $t1, $t2

or $t3, $t1, $t2

sub $t4, $t1, $t2

and $t5, $t1, $t2

• Example with no ILP
• add $t0, $t1, $t2

or $t3, $t0, $t2

sub $t4, $t3, $t2

and $t5, $t4, $t2

ILP in real programs

is limited

EE 108b Lecture 10C. Kozyrakis 32

Superscalar

• Fetch and execute multiple instructions per cycle => CPI < 1

• Example: 2-way Superscalar

– Fetch 2 instructions/clock cycle

– Decision to execute two instructions handled dynamically

– Can only execute 2nd instruction if 1st instruction executes (in-order exec.)

• Resources: double amount of hardware (FUs, Register file ports)

• Issues: hazards, branch delay, load delay

Pipe Stages

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Ideal CPI =

EE 108b Lecture 10C. Kozyrakis 33

Deeper Pipelining

• Increase number of pipeline stages

– Fewer levels of logic per pipe stage

– Higher clock frequency

• Example 9-stage pipeline

• Almost double number of pipe stage registers (MIPS R4000)

• Issues: branch delay, load delay: CPI = 1.4 - 2.0

• Modern pipelines

– Pentium 4: 24 stages, 3+ GHz

– Prescott: 35 stages, 4+ GHz

Pipe Stages

IF1 IF2 ID EX MEM1 MEM2 MEM3 WB

IF1 IF2 ID EX MEM1 MEM2 MEM3 WB

EE 108b Lecture 10C. Kozyrakis 34

Dynamic Branch Prediction

• Predict direction of branches based on past behavior

– Maintain a table of branch behavior and look up to get prediction

• Branch prediction buffer (or branch history table BHT)

– Lower bits of PC address index table of 1 bit values

– Says whether or not branch taken last time

– Evaluate actual branch condition and correct if incorrect

• Recover by flushing pipeline and restarting fetch

• Reset prediction

– Branch prediction using 2 bits often more accurate

Pipe Stages

bne IF1 IF2 ID EX

IF1 IF2 ID EXBHT

BAT

EE 108b Lecture 10C. Kozyrakis 35

Dynamic Scheduling

• Execute instructions out-of-order

• Fetch multiple instructions per cycle into instruction queue using
branch prediction

• Figure out which are independent and execute them in parallel

• Example

• add $t0, $t1, $t2

or $t3, $t0, $t2

sub $t0, $t1, $t2

and $t5, $t0, $t2

• Superscalar + Dynamic scheduling

• add $t0, $t1, $t2 sub $t0, $t1, $t2

or $t3, $t0, $t2 and $t5, $t0, $t2

• What’s wrong with this?

EE 108b Lecture 10C. Kozyrakis 36

Register Renaming

• Rename (map) architectural registers to physical registers in
decode stage to get rid of false dependencies

• add $t0, $t1, $t2

or $t3, $t0, $t2

sub $t0, $t1, $t2

and $t5, $t0, $t2

• Superscalar + Dynamic scheduling + register renaming

• add $t0A, $t1, $t2 sub $t0B, $t1, $t2

or $t3, $t0A, $t2 and $t5, $t0B, $t2

• Need more physical registers than architectural registers

• Physical registers are automatically recycled

EE 108b Lecture 10C. Kozyrakis 37

Dynamic Scheduling in a Modern OOO
MIPS R10000

4xinst decode

map table

Instr. mem

16-entry

int. Q

ALU1 ALU2

64-entry

Int GPR

7R3W

LD/ST

Data mem

64-entry

FPR

5R3W

ALU1 ALU2

16-entry

FP. Q

map table(16R4W)
IN ORDER

OOO

Branch

predictor

EE 108b Lecture 10C. Kozyrakis 38

Limits of Advanced Pipelining

• Limited ILP in real programs

• Pipeline overhead

• Limited branch prediction accuracy (85%-98%)

• Memory inefficiency

• Complexity of implementation

EE 108b Lecture 10C. Kozyrakis 39

Are We Done With Hardware?

• Unfortunately (or fortunately depending on your view) no

– Still need to talk about the other main hardware piece

– Memory

• Why talk about memory?

– Isn’t it just a large array of bits?

• Used to be, but not any more

• Problem:

– Typically want a lot of memory in your machine

• Usually hundreds of dollars

• Since it is expensive, you want the most bits/$

– Since the memory price is #1 issue, you have other issues

EE 108b Lecture 10C. Kozyrakis 40

Five Components

Processor

Computer

Control

Datapath

Memory Devices

Input

Output

•Datapath

•Control

•Memory

•Input

•Output

