EE 278 Lecture 1

- Logistics
- What this course is about
- Law of large numbers

Add a link EE 278 Fall 2016

Control

Communication

*Estimation

Continuous

Clean signal

Noisy signal

Discrete

Clean signal

* Detection / Hypothesis testing / Classification

Communication

Statistics

Machine learning
Law of large numbers.

\[X_1, \ldots, X_n, \ldots, \text{ i.i.d.} \rightarrow \text{ independent and identically distributed} \]

E.g., \(X_i = \) the result of the \(i \)-th coin flip (0 for H, 1 for T)

\[S_n = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{running sum} \]

Law of large numbers says:

\[\frac{1}{n} S_n \xrightarrow{\text{in probability}} \mathbb{E}[X_1] = \mu \]

running average.

Weak law of large number. In other words,

\[\Pr \left\{ \left| \frac{1}{n} S_n - \mu \right| > \varepsilon \right\} \xrightarrow{n \to \infty} 0 \]

\[\mathbb{E}\left(\frac{1}{n} S_n \right) = \mu \rightarrow \text{by linearity of expectation} \]

the probability that \(\frac{1}{n} S_n \) goes out of the range \(\rightarrow 0 \)

If \(\text{var} [X_i] = \sigma^2 < \infty \), \(\mathbb{E}[X_i] = \mu < \infty \), the weak LLN holds.

E.g. \(X_i \) is the \(i \)-th coin flip.

model: \(p = \Pr [X_i = \text{Tail}] \) - parameter

flipping coins - generating data

\[\hat{p} = \frac{\# \text{ of Tails}}{\# \text{ of flips}} \]
The estimator can be stated as:

\[\hat{p}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \]

\[X_i = 1 \text{ if the outcome is } T \]

\[= \frac{1}{n} S_n \]

\[\xrightarrow{P} \mu = \mu \]

Sample average

\[\xrightarrow{P} \] convergence in probability. L.L.N.: law of large numbers

\[\text{Data} \rightarrow \text{model parameters} \]

\[\text{Data} \rightarrow \overset{\text{model parameters}}{\text{L.L.N.}} \rightarrow \text{predict performance} \]

\[\frac{X_1 + \ldots + X_n}{n} = \text{long term performance}. \]

\[E \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \mu \]

\[\text{var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \text{ var} \left(\sum_{i=1}^{n} X_i \right) = \frac{1}{n} \text{ var} (X_1) = \frac{\sigma^2}{n} \]