EE 278: Statistical Signal Processing
Homework 7
Due: Saturday, May 27, 2017 at 5pm

1. Exercise 10.5 in Gallager.

2. (a) In Q. 1 (10.5 in Gallager), fix $\bar{X}_1 = 0$, $\sigma^2_Z = 1$, $h = 1$, $\sigma^2_{X_1} = 1$ and $\beta = 1$. Consider 4 possible values for α: $\alpha = 0.1, 0.5, 0.9, 0.99$. For each of these values, simulate the system and plot a realization of $\{X_n\}$ and a realization of $\{\hat{X}_n\}$ on the same plot. Plot them for long enough time that the system reaches steady state. Explain how the plot qualitatively changes as α varies.

(b) In Q. 1, compute for general parameter values the impulse response of the LTI system from $\{W_n\}$ to $\{X_n\}$ and the impulse response of the estimator from $\{Y_n\}$ to $\{\hat{X}_n\}$. For the parameter values in part (a), plot the two impulse responses. How do the impulse responses qualitatively change with α? Is this consistent with your answer to part (a)?

3. Consider the vector dynamical system:

$$
\begin{align*}
X_1 &\sim \mathcal{N}(0, K_1) \\
X_{n+1} &= AX_n + BW_{n+1} \\
Y_n &= CX_n + DZ_n
\end{align*}
$$

where W_1, \ldots, Z_1, \ldots, are independent and $W_n \sim \mathcal{N}(0, K_w)$ and $Z_n \sim \mathcal{N}(0, K_z)$.

(a) Reformulate the scalar system:

$$
\begin{align*}
X &\sim \mathcal{N}(0, 1) \\
X_{n+1} &= X_n + 0.5 X_{n-1} + 0.2 X_{n-2} + W_{n+1} \\
Y_n &= X_n + 0.4 X_{n-1} + Z_n
\end{align*}
$$

as a vector dynamical system. Here, W_n’s and Z_n’s are independent and $\mathcal{N}(0, 1)$ distributed.

(b) For the general vector dynamical system, derive the recursion for the Kalman filter estimates and for the covariance matrices of the errors. Assuming that the error covariance matrices approach a limit as $n \to \infty$, characterize the limit in terms of the solution of an equation.