Section 2
EE278: Introduction to Statistical Signal Processing (Spring 2017)
Gates b03, 4:30-5:20pm, Monday, 04/17

1. Vector-version LLN
The scalar-version LLN can be stated as follows: for i.i.d. RVs X_1, X_2, \cdots, let $S_n = \sum_i X_i$. If $E[X_1] < \infty$ and $\text{Var}[X_1] < \infty$, then for any $\epsilon > 0$,
\[
\lim_{n \to \infty} \Pr \left(\frac{1}{n} S_n - E[X_1] > \epsilon \right) = 0.
\]
Now prove the following vector-version LLN: for i.i.d. random vectors $X_1, X_2, \cdots \in \mathbb{R}^k$, let $S_n = \sum_i X_i$. If $E[X_1] < \infty$ and $\text{Var}[X_1] < \infty$ (the inequality is element-wise), then for any $\epsilon > 0$,
\[
\lim_{n \to \infty} \Pr \left(\max_{j=1,\ldots,k} \left| \frac{1}{n} (S_n)_j - E[(X_1)_j] \right| > \epsilon \right) = 0.
\]
(Hint: use the union bound)

Solution: As X_1, X_2, \cdots are i.i.d. random vectors, then for their j-th elements, $(X_1)_j, (X_2)_j, \cdots$ are i.i.d. random variables. Hence the scalar-version LLN applies. In other word, for any $j = 1, \ldots, k$ and any $\epsilon > 0$, we have
\[
\lim_{n \to \infty} \Pr \left(\left| \frac{1}{n} (S_n)_j - E[(X_1)_j] \right| > \epsilon \right) = 0.
\]
Then for any $\epsilon > 0$,
\[
\lim_{n \to \infty} \Pr \left(\max_{j=1,\ldots,k} \left| \frac{1}{n} (S_n)_j - E[(X_1)_j] \right| > \epsilon \right) = \lim_{n \to \infty} \Pr \left(\bigcup_j \left| \frac{1}{n} (S_n)_j - E[(X_1)_j] \right| > \epsilon \right) \leq \lim_{n \to \infty} \sum_{j=1}^k \Pr \left(\left| \frac{1}{n} (S_n)_j - E[(X_1)_j] \right| > \epsilon \right) \leq \sum_{j=1}^k \lim_{n \to \infty} \Pr \left(\left| \frac{1}{n} (S_n)_j - E[(X_1)_j] \right| > \epsilon \right) = 0.
\]

2. Unbiased and consistent estimation of the variance
Let X_1, X_2, \cdots be i.i.d. RVs with mean μ and variance θ. Let $\hat{\theta}_n$ be an estimator of the variance. We say $\hat{\theta}_n$ is unbiased if $E[\hat{\theta}_n] = \theta$ and $\hat{\theta}_n$ is consistent if $\hat{\theta}_n$ converges to θ in probability.

(a) If we know the μ, propose an unbiased and consistent estimator of the variance.

(b) If we do not know the variance μ, propose an unbiased and consistent estimate of the variance.

Solution: (a) If we know μ, then the estimator can simply be
\[
\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.
\]
It is unbiased because
\[
E[\hat{\theta}_n] = E\left[\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \right] = \frac{1}{n} \sum_{i=1}^n E[(X_i - \mu)^2] = \theta.
\]

To prove consistence, we note that the terms $(X_i - \mu)^2$ are i.i.d. and then we can use LLN.
(b) We start by substituting μ in 1 by its empirical estimate $\frac{1}{n} \sum_{i=1}^{n} X_i$. Then the estimator becomes

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \frac{1}{n} \sum_{j=1}^{n} X_j)^2.$$

We next examining its expectation:

$$\mathbb{E}[\hat{\theta}_n] = \mathbb{E}[\frac{1}{n} \sum_{i=1}^{n} (X_i - \frac{1}{n} \sum_{j=1}^{n} X_j)^2] = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \left(X_i^2 - 2X_i \frac{1}{n} \sum_{j=1}^{n} X_j + \left(\frac{1}{n} \sum_{j=1}^{n} X_j \right)^2 \right) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i^2] - 2\frac{1}{n} \sum_{i=1}^{n} X_i \frac{1}{n} \sum_{j=1}^{n} X_j + \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{n} \sum_{j=1}^{n} X_j \right)^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i^2] - \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i^2] - \frac{1}{n^2} \sum_{i \neq j} \mathbb{E}[X_i X_j]$$

$$= \frac{n-1}{n^2} \sum_{i=1}^{n} \mathbb{E}[X_i^2] - \frac{1}{n^2} \sum_{i \neq j} \mathbb{E}[X_i X_j]$$

We know that $\mathbb{E}[X_i^2] = \theta + \mu^2$ and $\mathbb{E}[X_i X_j] = \mu^2$. Then

$$\mathbb{E}[\hat{\theta}_n] = \frac{n-1}{n^2} \sum_{i=1}^{n} (\theta + \mu^2) - \frac{1}{n^2} \sum_{i \neq j} \mu^2 = \frac{n-1}{n^2} n(\theta + \mu^2) - \frac{1}{n^2} n(n-1) \sum_{i \neq j} \mu^2 = \frac{n-1}{n} \theta.$$

Then we know $\mathbb{E}[\frac{n}{n-1} \hat{\theta}_n] = \theta$. Therefore our unbiased estimator for the variance should be

$$\hat{\theta}_{n}^{ub} = \frac{n}{n-1} \hat{\theta}_n = \frac{1}{n-1} (X_i - \frac{1}{n} \sum_{j=1}^{n} X_j)^2.$$

To show that it is consistent, note that by previous derivation,

$$\hat{\theta}_{n}^{ub} = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \frac{1}{n} \sum_{i=1}^{n} X_i \frac{1}{n} \sum_{j=1}^{n} X_j \right)$$

By LLN,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \overset{p}{\to} \mu, \quad \frac{1}{n} \sum_{i=1}^{n} X_i^2 \overset{p}{\to} \theta + \mu^2.$$

Also,

$$\frac{n}{n-1} \to 1.$$

Then,

$$\hat{\theta}_{n}^{ub} = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \frac{1}{n} \sum_{i=1}^{n} X_i \frac{1}{n} \sum_{j=1}^{n} X_j \right) \overset{p}{\to} 1 (\theta + \mu^2 - \mu^2) = \theta.$$

□
3. Covariance matrices

Which of the following matrices can be a covariance matrix? Justify your answer. Either construct a random vector \(X \) with the given covariance matrix as a function of the i.i.d. zero mean unit variance random variables \(Z_1, Z_2, Z_3 \), or establish a contradiction as was done in lecture.

(a) \[
\begin{bmatrix}
1 & 2 \\
0 & 2
\end{bmatrix}
\]
(b) \[
\begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}
\]
(c) \[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{bmatrix}
\]
(d) \[
\begin{bmatrix}
1 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 3
\end{bmatrix}
\]

Solution:

a) No: not symmetric.
b) Yes: covariance matrix of \(X_1 = Z_1 + Z_2 \) and \(X_2 = Z_1 + Z_3 \).
c) Yes: covariance matrix of \(X_1 = Z_1 \), \(X_2 = Z_1 + Z_2 \), and \(X_3 = Z_1 + Z_2 + Z_3 \).
d) No: several justifications.
 - \(\sigma_{23}^2 = 9 > \sigma_{22}\sigma_{33} = 6 \), which contradicts the Schwarz inequality.
 - The matrix is not nonnegative definite since the determinant is \(-2\).
 - One of the eigenvalues is negative (\(\lambda_1 = -0.8056 \)).

4. Fun with Gaussian vectors.

Let \(X \) be a Gaussian random vector with mean \(\mu \) and covariance matrix \(K \) given by

\[
\mu = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}.
\]

1. Find the pdf of \(X_1 \).
2. Find the pdf of \(X_2 + X_3 \).
3. Find the pdf of \(2X_1 + X_2 + X_3 \).
4. Find \(P\{2X_1 + X_2 + X_3 < 0\} \).
5. Find the joint pdf of \(Y = AX \), where \(A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \).

Solution:

1. The marginal pdfs of a jointly Gaussian pdf are Gaussian. Therefore \(X_1 \sim \mathcal{N}(1,1) \).
2. Since \(X_2 \) and \(X_3 \) are independent (\(\sigma_{23} = 0 \)), the variance of the sum is the sum of the variances. Also the sum of two jointly Gaussian random variables is also Gaussian. Therefore \(X_2 + X_3 \sim \mathcal{N}(7, 13) \).
3. Since \(2X_1 + X_2 + X_3 \) is a linear transformation of a Gaussian random vector,

\[
2X_1 + X_2 + X_3 = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix},
\]

it is a Gaussian random vector with mean and variance

\[
\mu = \begin{bmatrix} 2 & 1 & 1 \\ 5 & 2 \end{bmatrix} = 9 \quad \text{and} \quad \sigma^2 = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = 21.
\]

Thus \(2X_1 + X_2 + X_3 \sim \mathcal{N}(9, 21) \).
4. Let $Y = 2X_1 + X_2 + X_3$. In part (c) we found that $Y \sim \mathcal{N}(9, 21)$. Thus

$$
\mathbb{P}\{Y < 0\} = \Phi\left(\frac{0 - \mu_Y}{\sigma_Y}\right) = \Phi\left(-\frac{9}{\sqrt{21}}\right) = \Phi(-1.96) = Q(1.96) = 2.48 \times 10^{-2}.
$$

5. In general, $AX \sim \mathcal{N}(A\mu_X, A\Sigma_XA^T)$. For this problem,

$$
\mu_Y = A\mu_X = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \end{bmatrix}
$$

$$
\Sigma_Y = A\Sigma_XA^T = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 21 & 6 \\ 6 & 12 \end{bmatrix}
$$

Thus $Y \sim \mathcal{N}\left(\begin{bmatrix} 9 \\ -2 \end{bmatrix}, \begin{bmatrix} 21 & 6 \\ 6 & 12 \end{bmatrix}\right)$.