Course Information

Nuts and Bolts
- Prerequisites: EE279 or equivalent (Digital Communications)
- Required Textbook: *Wireless Communications* (by me)
 - Available at bookstore or Amazon
 - Extra credit and prize for finding typos/mistakes/etc.
 - Supplemental texts on 1 day reserve at Terman.
- Class Homepage: www.stanford.edu/class/ee359
 - All handouts, announcements, homeworks, etc. posted to website
 - "Lectures" link continuously updates topics, handouts, and reading
- Class Mailing List: ee359-students (automatic for on-campus registered students)
 - Guest list ee359-guest for SCPD/auditors: send TA email to sign up.
 - Sending mail to ee359-staff reaches me and the TA.

Course Information

Syllabus
- Overview of Wireless Communications
- Path Loss, Shadowing, and Fading Models
- Capacity of Wireless Channels
- Digital Modulation and its Performance
- Adaptive Modulation
- Diversity
- MIMO Systems
- Equalization, Multicarrier, and Spread Spectrum
- Multiuser Communications
- Wireless Networks

Outline
- Course Basics
- Course Syllabus
- The Wireless Vision
- Technical Challenges
- Current Wireless Systems
- Emerging Wireless Systems
- Spectrum Regulation
- Standards

Course Information

Policies
- Grading: Two Options
 - Project (4 units): HWs - 20%, 2 Exams - 25%, 30%, Project - 25%
 - No Project (3 units): HWs - 25%, 2 Exams - 35%, 40%
- HWs: assigned Wednesday, due following Thursday at noon
 - Same deadline for SCPD students
 - Homeworks lose 25% credit per day late, lowest HW dropped
 - Up to 3 students can collaborate and turn in one HW writeup
 - Collaboration means all collaborators work out all problems together
- Exams:
 - Exam 1 tentatively on 11/7 (11-1 pm), Final is 12/14 (9:30-11:30)
 - Exams must be taken at scheduled time, no makeup exams
 - Local SCPD students must take exams on-campus
 - For off-campus exams you must make arrangements well in advance

Course Information

Project Option
- Term project on anything related to wireless
- Literature survey, analysis, or simulation
 - Survey is low risk, maximum grade capped at 85%
 - Analysis/simulation more risky: start early, discuss with me.
 - See last year's class for examples (good and bad)
 - 2 can collaborate if project merits collaboration (scope, synergy)
- Project proposal: due 11/18 at 5 pm
 - ~2 paragraph proposal with detailed description of project plan
 - Graded independently of final report (~5-10 hours)
 - Final report due 12/9 at 5 pm (~8-10 pages, ~20-40 hours)

Course Information

Wireless History
- Ancient Systems: Smoke Signals, Carrier Pigeons, ...
- Radio invented in the 1880s by Marconi
- Many sophisticated military radio systems were developed during and after WW2
- Cellular has enjoyed exponential growth since 1988, with almost 1 billion users worldwide today
 - Ignited the recent wireless revolution
 - 3G roll-out disappointing in Europe, nascent in US
 - Asia way ahead of the rest of the world
- Much hype in 1990s, great failures around 2000
 - 1G Wireless LANs/Iridium/Metricom

Exciting Developments
- Internet and laptop use exploding
- 2G/3G wireless LANs growing rapidly
- Huge cell phone popularity worldwide
- Emerging systems such as Bluetooth, UWB, Zigbee, and WiMAX opening new doors
- Military and security wireless needs
- Important interdisciplinary applications
Future Wireless Networks

Ubiquitous Communication Among People and Devices
- Wireless Internet access
- Nth generation Cellular
- Wireless Ad Hoc Networks
- Sensor Networks
- Wireless Entertainment
- Smart Homes/Spaces
- Automated Highways
- All this and more...

Future Generations

<table>
<thead>
<tr>
<th>Rate</th>
<th>Other Tradeoffs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b WLAN</td>
<td>Rate vs. Coverage</td>
</tr>
<tr>
<td>4G</td>
<td>Rate vs. Delay</td>
</tr>
<tr>
<td>2G</td>
<td>Rate vs. Cost</td>
</tr>
<tr>
<td>2G Cellular</td>
<td>Rate vs. Energy</td>
</tr>
</tbody>
</table>

Multimedia Requirements

<table>
<thead>
<tr>
<th></th>
<th>Voice</th>
<th>Data</th>
<th>Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td><100ms</td>
<td>-</td>
<td><100ms</td>
</tr>
<tr>
<td>Packet Loss</td>
<td><1%</td>
<td>0</td>
<td><1%</td>
</tr>
<tr>
<td>BER</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Data Rate</td>
<td>8-32 Kbps</td>
<td>1-100 Mbps</td>
<td>1-20 Mbps</td>
</tr>
<tr>
<td>Traffic</td>
<td>Continuous</td>
<td>Bursty</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Design Challenges

- Wireless channels are a difficult and capacity-limited broadcast communications medium
- Traffic patterns, user locations, and network conditions are constantly changing
- Applications are heterogeneous with hard constraints that must be met by the network
- Energy and delay constraints change design principles across all layers of the protocol stack

Evolution of Current Systems

- Wireless systems today
 - 2G Cellular: ~30-70 Kbps.
 - WLANs: ~10 Mbps.
- Next Generation
 - 3G Cellular: ~300 Kbps.
 - WLANs: ~70 Mbps.
- Technology Enhancements
 - Link: Antennas, modulation, coding, adaptivity, DSP, BW.
 - Network: Dynamic resource allocation. Mobility support.
 - Application: Soft and adaptive QoS.

"Current Systems on Steroids"

Quality-of-Service (QoS)

- QoS refers to the requirements associated with a given application, typically rate and delay requirements.
- It is hard to make a one-size-fits-all network that supports requirements of different applications.
- Wired networks often use this approach with poor results, and they have much higher data rates and better reliability than wireless.
- QoS for all applications requires a cross-layer design approach.

Crosslayer Design

- Application
- Network
- Access
- Link
- Hardware

Crosslayer Techniques

- Adaptive techniques
 - Link, MAC, network, and application adaptation
 - Resource management and allocation (power control)
- Diversity techniques
 - Link diversity (antennas, channels, etc.)
 - Access diversity
 - Route diversity
 - Application diversity
 - Content location/server diversity
- Scheduling
 - Application scheduling/data prioritization
 - Resource reservation
 - Access scheduling

Wireless Performance Gap
Current Wireless Systems

- Cellular Systems
- Wireless LANs
- Satellite Systems
- Paging Systems
- Bluetooth
- Ultrawideband radios
- Zigbee radios

Cellular Systems:
Reuse channels to maximize capacity
- Geographic region divided into cells
- Frequencies/timeslots/codes reused at spatially-separated locations.
- Co-channel interference between same color cells.
- Base stations/MTSOs coordinate handoff and control functions.
- Shrinking cell size increases capacity, as well as networking burden.

Cellular Phone Networks

3G Cellular Design:
Voice and Data
- Data is bursty, whereas voice is continuous
- Typically require different access and routing strategies
- 3G “widens the data pipe”:
 - 384 Kbps.
 - Standard based on wideband CDMA
 - Packet-based switching for both voice and data
- 3G cellular struggling in Europe and Asia
 - Evolution of existing systems (2.5G, 2.6798G):
 - GSM+EDGE
 - IS-95(CDMA)+HDR
 - 100 Kbps may be enough
- What is beyond 3G?

Wireless Local Area Networks (WLANs)

- WLANs connect “local” computers (100m range)
- Breaks data into packets
- Channel access is shared (random access)
- Backbone Internet provides best-effort service
- Poor performance in some apps (e.g. video)

Wireless LAN Standards

- 802.11b (Current Generation)
 - Standard for 2.4GHz ISM band (80 MHz)
 - Frequency hopped spread spectrum
 - 1.6-10 Mbps, 500 ft range
- 802.11a (Emerging Generation)
 - Standard for 5GHz NII band (300 MHz)
 - OFDM with time division
 - 20-70 Mbps, variable range
 - Similar to HiperLAN in Europe
- 802.11g (New Standard)
 - Standard in 2.4 GHz and 5 GHz bands
 - OFDM
 - Speeds up to 54 Mbps

In 2007, all WLAN cards will have all 3 standards

Satellite Systems

- Cover very large areas
- Different orbit heights
 - GEOs (39000 Km) versus LEOs (2000 Km)
- Optimized for one-way transmission
 - Radio (XM, DAB) and movie (SatTV) broadcasting
- Most two-way systems struggling or bankrupt
 - Expensive alternative to terrestrial system
 - A few ambitious systems on the horizon

Paging Systems

- Broad coverage for short messaging
- Message broadcast from all base stations
- Simple terminals
- Optimized for 1-way transmission
- Answer-back hard
- Overtaken by cellular

Bluetooth

- Cable replacement RF technology (low cost)
- Short range (10m, extendable to 100m)
- 2.4 GHz band (crowded)
- 1 Data (700 Kbps) and 3 voice channels
- Widely supported by telecommunications, PC, and consumer electronics companies
- Few applications beyond cable replacement
Ultrawideband Radio (UWB)

- UWB is an impulse radio: sends pulses of tens of picoseconds (10^{-12}) to nanoseconds (10^{-9})
- Duty cycle of only a fraction of a percent
- A carrier is not necessarily needed
- Uses a lot of bandwidth (GHz)
- Low probability of detection
- Excellent ranging capability
- Multipath highly resolvable: good and bad
 - Can use OFDM to get around multipath problem.

Why is UWB Interesting?

- Unique Location and Positioning properties
 - 1 cm accuracy possible
- Low Power CMOS transmitters
 - 100 times lower than Bluetooth for same range/data rate
- Very high data rates possible
 - 500 Mbps at ~10 feet under current regulations
- 7.5 GHz of “free spectrum” in the U.S.
 - FCC recently legalized UWB for commercial use
 - Spectrum allocation overlays existing users, but its allowed power level is very low to minimize interference
- “Moore’s Law Radio”
 - Data rate scales with the shorter pulse widths made possible with ever faster CMOS circuits

IEEE 802.15.4 / ZigBee Radios

- Low-Rate WPAN
- Data rates of 20, 40, 250 kbps
- Star clusters or peer-to-peer operation
- Support for low latency devices
- CSMA-CA channel access
- Very low power consumption
- Frequency of operation in ISM bands

 Focus is primarily on radio and access techniques

Data rate

Range

Power Dissipation

Emerging Systems

- Ad hoc wireless networks
- Sensor networks
- Distributed control networks

Ad-Hoc Networks

- Peer-to-peer communications.
- No backbone infrastructure.
- Routing can be multihop.
- Topology is dynamic.
- Fully connected with different link SINRs

Design Issues

- Ad-hoc networks provide a flexible network infrastructure for many emerging applications.
- The capacity of such networks is generally unknown.
- Transmission, access, and routing strategies for ad-hoc networks are generally ad-hoc.
- Crosslayer design critical and very challenging.
- Energy constraints impose interesting design tradeoffs for communication and networking.
Sensor Networks
Energy is the driving constraint

- Nodes powered by nonrechargeable batteries
- Data flows to centralized location.
- Low per-node rates but up to 100,000 nodes.
- Data highly correlated in time and space.
- Nodes can cooperate in transmission, reception, compression, and signal processing.

Energy-Constrained Nodes

- Each node can only send a finite number of bits.
- Transmit energy minimized by maximizing bit time
- Circuit energy consumption increases with bit time
- Introduces a delay versus energy tradeoff for each bit
- Short-range networks must consider transmit, circuit, and processing energy.
 - Sophisticated techniques not necessarily energy-efficient.
 - Sleep modes save energy but complicate networking.
- Changes everything about the network design:
 - Bit allocation must be optimized across all protocols.
 - Delay vs. throughput vs. node/network lifetime tradeoffs.
 - Optimization of node cooperation.

Distributed Control over Wireless Links

- Packet loss and/or delays impacts controller performance.
- Controller design should be robust to network faults.
- Joint application and communication network design.

Joint Design Challenges

- There is no methodology to incorporate random delays or packet losses into control system designs.
- The best rate/delay tradeoff for a communication system in distributed control cannot be determined.
- Current autonomous vehicle platoon controllers are not string stable with any communication delay

Can we make distributed control robust to the network? Yes, by a radical redesign of the controller and the network.

Spectrum Regulation

- Spectral Allocation in US controlled by FCC (commercial) or OSM (defense)
- FCC auctions spectral blocks for set applications.
- Some spectrum set aside for universal use
- Worldwide spectrum controlled by ITU-R

Regulation can stunt innovation, cause economic disasters, and delay system rollout

Standards

- Interacting systems require standardization
- Companies want their systems adopted as standard
 - Alternatively try for de-facto standards
- Standards determined by TIA/CTIA in US
 - IEEE standards often adopted
 - Process fraught with inefficiencies and conflicts
- Worldwide standards determined by ITU-T
 - In Europe, ETSI is equivalent of IEEE

Standards for current systems are summarized in Appendix D.

Main Points

- The wireless vision encompasses many exciting systems and applications
- Technical challenges transcend across all layers of the system design.
- Cross-layer design emerging as a key theme in wireless.
- Existing and emerging systems provide excellent quality for certain applications but poor interoperability.
- Standards and spectral allocation heavily impact the evolution of wireless technology