Lecture 5:
Adders

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2001 by Mark Horowitz (w/ Figures from High-Performance Microprocessor Design © IEEE)

Overview

Reading
– HP Adder paper
– EE271 Adder notes if you have not seen them before
– Chandrakasen -- First part of Chapter 10

Introduction
Fast adders generally use a tree structure to take advantage of parallelism to make the adder go faster. We will talk about a couple of different tree adders in this lecture, and go over in more detail one of the adders. The adder described in the paper is even more complex than the one in the notes, and at the end we will talk a little about what it does.¹

¹. These notes will number the lsb as bit zero, which is the convention that I have used over the past 3 years.
Adders

- N-bit adder sums two N-bit quantities (A & B) plus perhaps Cin
 - Sumi = Ai xor Bi xor Ci
 - Fundamental problem is rapidly calculating carry in to bit i (Ci)
 - All carries are dependent on all previous inputs
 - Therefore, least significant input has fanout of N, min delay \(\log_4 N \) FO4 delays even if there were no logic.

- Most adders use Generate and Propagate logic to compute \(C_i \)
 - \(G = A \ AND \ B \ (C_{out} \ forced \ to \ be \ true) \)
 - \(P = A + B \ (C_{out} = C_{in}) \)
 - Also could use \(P = A \ XOR \ B \), but OR is faster than XOR
 - Can combine \(G \) and \(P \) into larger blocks

 \[
 G_{20} = G_1 + G_0 P_1 \\
 P_{20} = P_1 P_0
 \]

Adder Cell Design

- Lots of XORs which makes it interesting design problem
 - On of few places where pass-gate logic is good

![Adder Cell Diagram]
Pass-Gate Logic

• But still not great

Linear Solutions (see EE271 notes)

• Simplest adder: ripple carry, faster adders: carry look-ahead, carry bypass...
 – All of these work out carry several bits at a time
 – Best designs have around 11 FO4 delays for 64 bits
 – Useful for small adders (up to 16 bits) and moderate performance longer adders
 – Carry Bypass
Logarithmic Solutions

- It would seem that to know \(C_i \), we need \(C_{i-1} \), so delay is linear with \(N \)
 - A clever trick called “prefix computation” lets us turn this kind of problem into logarithmic delay since \(G \) and \(P \) are associative.

1. Compute single bit \(G_i = A_iB_i, \quad P_i = A_i + B_i \) (0 <= i < N)
2. Compute \(G_2i = G_{2i+1} + G_{2i}P_{2i+1}, \quad P_2i = P_{2i+1}P_{2i} \) (0 <= i < N/2)
3. Compute \(G_4i = G_{2i+1} + G_{2i}P_{2i+1}, \quad P_4i = P_{2i+1}P_{2i} \) (0 <= i < N/4)
4. ...(continue up binary tree to find all generates & propagates)
5. ...(work down tree to find carry ins)
6. \(C_{4,2i+1} = G_4i + C_8i P_4i, \quad C_{4,2i} = C_8i \)
7. \(C_{2,2i+1} = G_2i + C_4i P_2i, \quad C_{2,2i} = C_4i \)
8. \(C_{i+1} = G_{2i} + C_2i P_{2i}, \quad C_{i} = C_2i \)
- This is known as a “binary tree” or “logarithmic tree” adder.
Composition of Block
8 Bit Tree Adder

\[\text{Sum}_i = A_i \text{ XOR } B_i \text{ XOR } C_i \]

Tree Adder
Logarithmic Solutions (cont.)

- Many variations exist on the logarithmic structure.
 - Combine more than two bits at a time (esp. w/ domino gates)
 - Just find carry into M-bit blocks to reduce delay down tree (ex: M=16)
 - Simultaneously, compute sums of M-bit blocks assuming Cin of 0, 1
 - Finally, mux output depending on actual Cin
- Logarithmic adders have longer wires
 - Gates are upsized so wire << gate load

Binary Tree Adder

- Can eliminate the carry out tree by computing a group for each bit position:
 \[
 \begin{align*}
 P_i, G_i, & \quad \text{for each bit position } i \\
 P_{i+1} & \quad \text{for } i+1 \\
 P_{i+2} & \quad \text{for } i+2 \\
 & \quad \vdots \\
 P_{i+7} & \quad \text{for } i+7
 \end{align*}
 \]

- Each circle has two gates, one that computes P for the group and one that computes G. This adder has a large number of wires, but can be very fast. In fact it provides a way to estimate what the min delay of an adder would be.
64 Bit Adder Delay

- Assume:
 - The output load is equal to the load on each input.
 - Using static gates (inverter is the fastest gate)
- Find delay from the effective fanout:
 - Simple approximation:
 - Must compute \(A_i \) xor \(B_i \) xor \(C_i \)
 - \(C_{\text{in}} \) (or LSB) must fanout to all bits (FO 64)
 - Total effective fanout 64 \(\times \) 2 (for some logic in chain) (3.5 FO4 delays)
- More complex
 - Look at effective fanout of the path through adder
 - \(P \) gates drive 3 gates, \(G \) gates drive 2. Effective fanout is about 3.5/stage
 - 1.5 (first NAND/NOR) 3.5\(^6\) \(\times \) 1ish (final Mux for Sum optimize for late select)
 - 5.7 FO4 (not really accounting for parasitic delay correctly)

Example

- Look at a real design of a 64-bit adder (by David Harris)
 - Dual-level carry-select adder, radix 4 (kind of)
 - Fully dual-rail domino
 - Performs only addition (input inverted in bypass network for subtract)
 - Delay (simulated) = 6.4 FO4 delays
- Design Issues
 - Adder architecture
 - Gate sizing
Architecture

- Logarithmic adder must generate up tree, then send carry down tree
- Carry Select adder cuts delay by only finding carry into block of 16
 - Meanwhile, sums must be computed for block assuming $C_{in} = 0, 1$
 - This also requires a very fast 16 bit adder
- Reuse the same trick: build a 16 bit carry select adder
 - 16 bit adder can share generate and propagate logic with main adder

2-Bit Logic

- 2-bit Propagates & Generates
 - $P_2 = P_0 P_1$
 - $G_2 = G_1 + G_0 P_1$
- Speculative Sums to bit b assuming carry in c: sum_{c_b}
 - $\text{sum}_{00} =$
 - $\text{sum}_{10} =$
 - $\text{sum}_{01} =$
 - $\text{sum}_{11} =$
- Final Result
 - $R_0 =$
 - $R_1 =$
4-bit Logic

• Carry in to 2 bit block b assuming cin to 16 bit block is c: cin2c_b
 – cin20_0 =
 – cin21_0 =
 – cin20_1 =
 – cin11_1 =

• 4-bit Propagates and Generates
 – g4 =
 – p4 =

16-bit Logic

• Carry in to 4 bit block b assuming cin to 16 bit block is c: cin4c_b
 – cin40_0 =
 – cin41_0 =
 – cin40_1 =
 – cin41_1 =
 – cin40_2 =
 – cin41_2 =
 – cin40_3 =
 – cin41_3 =

• 16-bit Propagates and Generates
 – g16 =
 – p16 =
64-bit Logic

• Carry in to 16 bit block b assuming cin to 16 bit block is c: cin$_{b}^{1}$
• cin$_{16_{0}}$ =
• cin$_{16_{1}}$ =
• cin$_{16_{2}}$ =
• cin$_{16_{3}}$ =

1. Assumes no carry in to 64 bit adder. This might be relaxed to handle subtraction at the expense of one more series transistor in the critical path.

Domino Implementation

• Notice that all the P, G, and C terms are monotonic!
• Only the sum select mux needs complementary inputs
 – Option 1: Generate single rail C, use static mux to select sum
 • Requires static mux plus inverter for C, C$_{b}$ mux select
 • Good for area
 • Delay = 6.7 - 7.3 FO4 delays
 – Option 2: Generate dual rail P, G, C, use domino mux to select sum
 • Requires twice as much hardware
 • Good for speed
 • Can produce dual-rail output in domino form for later circuits
 • Delay = 6.4 FO4 delays
Domino Tricks

• A bunch of domino tricks were used for maximum speed
 – Full utilization of static as well as domino gates
 – No clocked pulldowns on some domino gates
 • Needs delayed precharge clocks, so make sure it is worth it
 – Precharge necessary internal nodes
 • Predischarge other internal nodes when all transistors are off
 • Another speed hack that might not be worth it
 – No keepers
 • Living dangerously, probably not a good idea
• Skewed for fast eval at cost of slow precharge

• Some of these conflict with robust design principles

Naming Conventions

• Very important to name all gates and nodes
 – Node names necessary when debugging internal signals
 – Gates needed for same reason
 – Gate types:
 • D1 = Domino with evaluation transistor
 • D2 = Domino with no evaluation transistor
 • H = High skew CMOS
 • L = Low skew CMOS
 – Clocks:
 • clk: normal clock
 • dlclk: delayed low (falling) clock (for D2 delayed precharge)
 • ddlclk: doubly delayed low clock
2 Bit Adder Block

4 Bit Adder Block
2-Bit Logic

• 2-bit Propagates & Generates
 – P2 = P0P1 = (A0+B0)(A1+B1)
 – G2 = G1+G0P1 = A1B1 + A0B0 (A1+B1)

• Speculative Sums to bit b assuming carry in c: sumcb
 – sum00 = A0 xor B0
 – sum10 = ~(A0 xor B0)
 – sum01 = A1 xor B1 xor (A0B0)
 – sum11 = A1 xor B1 xor (A0 + B0)

• Final Result
 – R0 = cin16 ? (cin21 ? sum10 : sum00) : (cin20 ? sum10 : sum00)
 – R1 = cin16 ? (cin21 ? sum11 : sum01) : (cin20 ? sum11 : sum01)

4-bit Logic

• Carry in to 2 bit block b assuming cin to 16 bit block is c: cin2cb
 – cin200 = cin40
 – cin210 = cin41
 – cin201 = g20 + p20cin40
 – cin111 = g20 + p20cin41

• 4-bit Propagates and Generates
 – g4 = g21 + p21g20
 – p4 = p20p21
16-bit Logic

- Carry in to 4 bit block b assuming cin to 16 bit block is c: cin4cb
 - cin40 = 0
 - cin41 = 1
 - cin401 = g40
 - cin411 = g40 + p40
 - cin402 = g41 + p41 (g40)
 - cin412 = g41 + p41 (g40 + p40)
 - cin403 = g42 + p42 (g41 + p41 (g40))
 - cin413 = g42 + p42 (g41 + p41 (g40 + p40))

- 16-bit Propagates and Generates
 - g16 = g43 + p43 (g42 + p42 (g41 + p41g40))
 - p16 = p20p21p22p23

64-bit Logic

- Carry in to 16 bit block b assuming cin to 16 bit block is c: cin16b
 - cin160 = 0
 - cin161 = g160
 - cin162 = g161 + p161 (g160)
 - cin163 = g162 + p162 (g161 + p161 (g160))
 - cin164 = g163 + p163 (g162 + p162 (g161 + p161 (g160)))
HP Adder

Graph missing

Alpha Adder

Graph missing