VLSI Power Delivery

David Ayers
Outline

- Die power delivery
 - Die power goals
 - Typical processor power grid
 - Transistor power noise
 - SSN noise and control (decoupling)
 - Package connections
 - Large di/dt’s
- System power delivery
 - Components: VR’s; MB; Socket; Package
 - Capacitor arrays
 - Frequency analysis and resonance
- Related topics
 - Signal return path and cross-talk
 - IO power delivery
 - Filtered supplies for sensitive circuits
 - Scaling
Die Power Delivery
Goals of the Die Power Network

- **Do’s**
 - Deliver power from the package to the transistors with little voltage drop
 - Deliver charge from die capacitances to transistors to control noise spikes
 - Provide signal return and shielding

- **Don’ts**
 - Network should not wear out from electromigration and self-heating
 - No onerous layout requirements
 - Area usage should be minimized

- Designer must balance the competing objectives
 - For example, small voltage drop competes with minimizing area (metal) usage

- Typical solution has a regular grid in the upper layers
6 Layer Power Grid Example -- CBD

- Representative power grid design for 6 layer CBD shown
 - Custom layout may not be as regular at M2 & M3
- M2 is mirrored for well abutment
- M3 power shares tracks to limit metal usage and increase via counts
- Vias located at all next layer crossings
- Power metals are stacked as much as practical to simplify via stacks
 - Provides short access to thick upper layers
 - Thick and wide upper layers dominate the structure
Local Layout Considerations

- Transistor technology trends
 - Trend towards single poly direction for Optical Proximity Correction and Phase Shift Mask generation
 - Leg length being limited by increased poly resistance
 - Though fully silicided gates are being reported [3], [4]
 - Simplifies power layout and limits M1 leg lengths
 - Makes full gridding more practical
 - Vertical flow becomes very important, even dominate
 - Must consider vias in chip power models
 - High current density driving the need for high via counts for EM and voltage drop
 - May need more or wider power stripes to accommodate vias
 - Via counts should be in proportion to via resistance
 - Example: V5 = 1 Ohm, V1 = 3 Ohms → should have 3x as many V1’s
 - May need to push for larger size power vias
Transistor Behavior

- Graph of current vs. time from simulation of a repeater segment in 90 nm technology

- Behavior and local decoupling need is independent of clock frequency!

- Charge needed can be computed by integrating the current waveform

- Decoupling capacitance needed can be estimated by $Q/\Delta V$
 - ΔV is the budgeted voltage drop

Switching Current vs. Time

White (middle wave) = moderate load, FO ~ 4
Transistor Behavior (Cont’d)

- The worst IR drop point is at the peak
 - Worst \(\frac{dl}{dt} \) drop is at the inflection point halfway up the ramp

- The rising edge is nearly identical regardless of the load!

- Note that the transistor current is very fast -- peaks in < 20 ps

- Decoupling must be located close enough to be reached in time
 - Must beat current peak

- Package capacitors way too slow (nanosecond \(\tau \)’s)

Switching Current vs. Time

White (middle wave) = moderate load, \(FO \sim 4 \)
Green (upper wave) = heavy load, \(FO \sim 7 \)
Yellow (lower wave) = light load, \(FO \sim 2.5 \)
Impact on Nearby Logic

- Very fast transistor switching means very fast noise spikes
- Random block of logic is usually not a big noise concern
 - Thousands of scattered small transistors fire at various times in a clock cycle
 - Not enough 'stuff' firing at once to cause a serious disturbance
 - More like white noise
 - Bad case will be bank of synchronous drivers (like repeaters)
 - 64-256 large drivers firing synchronously
- Wave shown is from a power model repeater bank simulation with 90 nm technology
 - Spike droops up to 19% of Vdd
 - But droop only exceeds 5% of Vdd for < 25 ps
- With a clock cycle > 200 ps, there is minimal delay impact to nearby logic from one spike
 - Is extra decoupling really needed?
 - Noise spikes have the greatest speed impact on the repeated signal itself
Droop vs. Decap Distance and Die Metal

- Simulations from 180 nm technology node
 - Capacitors placed at various distances from noise source
- Note noise increase as capacitors are placed further away
- Substantial improvement with increasing power metal use

![Voltage Droop vs. Distance to Decap](chart.png)

Voltage Droop vs. Distance to Decap

- Voltage Droop (mV)
- Distance to Decap (µm)

- M5-28.9%
- M5-23.9%
- M5-18.9%
- M5-13.9%
Grid Propagation

- Die propagation is slow since resistance dominates
 - Typical top layer resistivity of 25-30 mOhms/sq
 - About 6-8x that (~ 200 mOhms/sq) for a single direction if half the layer is used for power wires
 - Factor of 2 each for half of a layer, half to Vdd or Vss, half line and space
 - Typical circuit capacitance density is ~ 1nF/mm² (90 nm node)
 - RC time constant is ~ 200 ps/mm one way!
 - Most droops are in the 10-20% range (not 1/e = 63% droop for an RC time constant)
 - Thus 10-20% droop propagates in the ~30 ps/mm range
 - Need to travel both to and from capacitance
 - Plus there is non-quasi static delay in decoupling cells of several ps
 - This limits the useful distance at which decoupling capacitors can be placed to a few hundred um or less
 - 30 ps/mm limits decoupling distance to ~200 um to respond to a 20 ps current spike
Capacitance Density

- Package planes have 30-100 μm separation
 - < 0.001 fF/μm²
- Die metals have ~ 0.5 μm of separation
 - ~ 0.07 fF/μm² (about 4x this value for 8 metal layers)
- MOS cap has ~ 2 nm of separation (90 nm node)
 - ~ 18 fF/μm²

- Current MIM (metal-insulator-metal) capacitor technologies are reaching ~ 1 fF/μm² (see the summary table in [1])
 - 1 fF/μm² is probably not very useful for bulk decoupling, need about 10x that
 - A higher density with a single mask was recently reported [2]

- MOS type caps remain as the main source of supplemental decap on die at 90 nm
 - Leakage is limiting usefulness – may need special structures
Decoupling Capacitor Design

- Want high capacitance density and low resistance for fast response
 - High density achieved by maximizing the poly gate oxide area
 - Low resistance achieved by limiting the distance between contacts to ~ 1um
- Decoupling added for global di/dt changes (1st droop) can have longer distance between contacts

![Decoupling Cell Tau vs. Channel Length](image)

NMOS Transistor Style Capacitor
Simulated in 130 nm Technology
Decoupling Capacitor Design (Cont’d)

- Cell type can be important
 - NMOS faster than PMOS inversion cells
 - PMOS accumulation cells can be faster than inversion but require wells which eat up space
 - Gate oxide leakage concerns may force accumulation cells
 - Work function shift reduces leakage
 - But capacitance rolls off at lower voltages (see graph)
 - Not well suited for analog circuit applications
Dense Capacitor Layout Example

- NMOS ‘waffle’ type layout shown
 - Poly in green, M1 in red
- Essentially a sheet of poly
 - Non-minimum openings for the silicon contacts (Vss)
 - Field oxide bumps for the poly contacts (Vcc)
- Achieves very high capacitance density with good contact spacing for low resistance and tau
Decoupling Capacitor Design (Cont’d)

- Must be aware of defects and planarity impacts
 - High poly and M1 density may increase the variation in nearby devices
 - Lower poly density means less capacitance per unit of area
 - Need to make trade-offs
 - May have millions of cells
 - Use greater than minimum spacing to reduce defect risk
- Need unit cells which can be easily built into arrays by tools
Package Connection

- C4 bump pitch has not been scaling as fast as transistor technology while current density is scaling
 - Result is increasing current per bump which will stretch reliability limits
- Note that only a few small areas have the highest current
 - Technology and uarch solutions are likely to be needed
- Increased top and second layer metal resources will also be needed

![C4 Bump Current Density for a Processor](image)
Large di/dt Swings

- So far we have mostly discussed local die noise
- Today’s processors use extensive clock gating to reduce power consumption
 - Clocks and clocked elements consume about 50% of active (non-leakage) power
 - A largely inactive processor can have very low active power consumption
 - Can be less than 50% of peak power
- Processors can transition from a low power state to a peak power state as fast as the pipelines can fill
 - For the 90 nm generation, this can be less than 20 cycles (<5 ns) for some processors
 - Processors are approaching 100 W
 - Can have di’s as high as 50 A
- Since leakage prevents much decap from being added, such swings will overwhelm die decap very quickly
System Power Delivery
Typical Power Delivery System

- 2 processor MB design shown
- VR current brought in to processors on ~2 sides
- Note the levels of decoupling
 1. Die (MOS)
 2. Back of package
 3. High speed MB
 4. Low speed MB
- VR current brought in to processors on 2 sides to reduce impedance
- VR located close to processor
Packaging Cross-Section

- A sample processor cross-section is shown below
 - May or may not have a heat spreader
 - May have die side capacitors as well as land side
 - Package may have 4-14 layers depending on number of signals and cost structure of market (low-end desktop to high-end server)
 - May have an additional layer of package (interposer) for space transformation and for housing additional components
- Power must penetrate through the socket and package
Factors in Determining Decoupling

- The area of triangle Q_1 determines the need for die capacitance
 - $C_{\text{die}} = \frac{Q_1}{\Delta V}$; determined by di, dt, L_{pkg}, and the voltage drop target
- The area of triangle Q_2 determines the need for package capacitance
 - $C_{\text{pkg}} = \frac{Q_2}{\Delta V}$; determined by di, L_{pkg}, L_{HSMB}, and the voltage drop target
- The area of triangle Q_3 determines the need for board capacitance
 - $C_{\text{board}} = \frac{Q_3}{\Delta V}$; determined by di, L_{HSMB}, L_{LSMB}, and the voltage drop target
Power Delivery Implications -- dt

- Picture shows dt decreased by 2x from previous page -- small impact
- Capacitances are proportional to triangle areas
 - Note that the area of the Q_1 triangle (die capacitance) increases by less than 2x
 - Area of the other triangles (other capacitors) are unaffected
 - See [6] for a treatment of di/dt control
Power Delivery Implications -- Imax

- An increase in \(di \) has a big impact on all the capacitances each of which is proportional to the triangle areas
 - Square relation for area: 2x increase in \(di \) increases the triangles by 4x!
 - Even greater increase for \(Q_1 \)
- Reducing \(di \) is most effective for voltage control
Capacitor Current Example – 4 Levels

- Local voltage minima will be reached at each cross-over point
- Ideal design would have these minima equal
 - More cap levels would allow us to approach a flat impedance vs. frequency curve
Graphs shows a simulated voltage response for a system with die, package, board, and VR (bulk) capacitor arrays.

One droop for each cross-over in source of current.

- Example: 1st droop reached when main source passes from die cap to package cap.
Frequency Domain System Modeling

- Graph of power delivery impedance vs. frequency shown
 - Peak at the resonant frequency of the package/die system
 - Up slope caused by an inductance (ωL)
 - Down slope results from a capacitor ($1/\omega C$)
- Want to move the up slope right (by reducing the inductance)
- Or, move the down slope left (by increasing the capacitance
 - May be at odds with cost targets!
- Otherwise, may need special techniques to overcome or live with the resonance
 - Clamps, charged pumped capacitors, etc., [5]
Related Topics
Global Layout and Signal Return

- Power grid also supplies return path for signals
- Wide busses (~128b) can switch over an Amp of peak current
- Without adequate return path, inductive noise spikes can disturb signals
 - Additive to capacitive noise for certain patterns
- May need additional power wires to control inductive cross-talk
 - Example: half-shielded scheme shown below
- Robust thick upper metal power gridding can provide return path for lower layer signals
 - Can focus on signal density on lower layers
IO Power Delivery

- IO supplies (Vtt) are often separated from core power
 - Buffers on processor and chipset run off the IO supply
 - Signals usually referenced to Vss as much as practical
 - Avoids needing to decouple *between* supplies to establish a low impedance return path
- IO supply will need adequate decap and routing
 - Similar analysis to core power
 - Will also need frequency analysis
 - SSN analysis especially important
 - Will need partial (or full) package planes for Vtt
 - May need full Vss planes to shield the IO signals

Example of Package IO Routing (Crow’s Flights)
IO Power Issues

- Simplified models (like the one shown) have a path to ideal ground
 - This is non-physical
- Models must reflect true path including signal return path in the Vss network
 - Only way to properly reflect the interaction of Vdd (core supply) and Vtt (IO supply)
 - IO signaling will inject noise into the core Vss (and vice-versa)
- SSN will probably need control
 - Edge rate control
 - Die and package Vtt decoupling
 - Careful via and bump layout to keep inductive loops small
 - Data inversion to avoid more than 50% 0-1 or 1-0 transitions
Filtered Supplies for Special Circuits

- Certain sensitive circuits need very quiet supplies to ensure faithful operation
 - Examples are PLL’s and DLL’s
- Filters can be used to control power noise
- A simple solution is an LC filter
 - Hooked up in a manner to convert differential noise to common model
 - Note that Vssa is *not* shorted to Vss
Die Power Delivery Scaling

- Transistor current scales on the time axis with channel length (actual, not drawn)
 - Current ramp will speed up by more than 0.7x per generation
- Capacitance density increases by about 1.4x per generation
- Wire resistance per unit length increases by ~ 2x per generation for scaled wires
 - Narrow wire width effects are making this worse
 - Retaining large dimensions for the top 2 layers (or adding layers) needed to offset this problem
 - Ensure good connectivity to top layer power
 - Otherwise RC delay for charge sharing will degrade
- RC per unit of length of power grid is fairly constant
- Unfortunately, RC path delay scaling is forcing more repeaters and increased sizes which exacerbates the problem
 - Bus width increases also compound the issue
Current Density Scaling

- Current density is $C/Area \times fV(AF)$
- $C/Area$ goes up $\sim 1.4x$
- Voltage has been trending down $\sim 0.85x$
 - Future decreases (beyond 90 nm) may be less $(0.9 \sim 0.95x)$ due to leakage limitations
- Processor frequencies have been going up $\sim 1.8x$
 - Less for other types of IC’s
 - Less in the future $(\sim 1.6x)$?
- Leakage is increasing total current $\sim 1.1x$
- Activity factors \sim constant in worst areas
 - Decreasing on a full chip basis as cache area increases

- Overall current density increasing by $\sim 2x$
 - Forcing power metal needs to increase each generation
References

[1] Ng, et al., Table 1, paper 9.6, IEDM 2002