Lecture 3

Transistor Models

Mark Horowitz
Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Overview

Reading
Chen Predicting CMOS Speed
Pelgrom Transistor Matching
Lovett Transistor Matching

Introduction
Transistors are not all the same, we need to have some model of the variations too. This comes both in local variations (matching), and run to run variations. In this lecture we will briefly review the transistor models, and spend most of the lecture talking about device variations.

There is also a struggle in doing simulations: on the one hand you would like the model to be accurate, and yet you need to understand the model to be able to reason about it and predict the results. This leads to a number of strategies of building simple models first and then building up the complete model. To do this it is helpful to ‘calibrate’ a technology, and use these simple models to help you reason about the technology, and circuit.
MOS Device Behavior

Assume you know MOS device issues from EE313

• Briefly review what the most important issues are:
 – Break into iV and CV curves
• Glasser (and most other books) covers this material in more detail if you want more info.

For iV curves need to understand:
 basic shape, threshold voltage, mobility effects, velocity saturation, subthreshold leakage, scaling (and variations in these parameters)

For CV curves need to understand:
 overlap capacitance, channel charge, junction capacitance

Basic Shape

Two plots are used, one vs. Vds, and one vs. Vgs

• Ids - Vds plot
 – Two regions
 Linear (low Vds)
 Saturated (high Vds)
 – Linear region
 Effective Resistance
 – Saturated region
 Current
 G_m
 G_{ds}
Basic Shape

I_{ds} vs. V<sub.gs</sub>
- Two regions again
 - Subthreshold
 - Saturation
- Subthreshold
 - Slope of line
 - Threshold voltage
- Saturation
 - Current
 - G_m

Mobility

Has a strong temperature dependence:

\[\mu = \mu_0 \left(\frac{T}{T_0} \right)^{-3/2} \]

Temp change from 27° to 130° decreases current to 0.65. The circuit will run 1.6 time slower.

Also decreases with high vertical field, and channel doping
- New models say it is completely set by vertical field

\[n_e(V_{gs}, V_{th}, T_{ox}) = \frac{540}{1 + \left(\frac{V_{gs} + V_{th}}{0.54T_{ox}} \right)^{1.85}} \]

\(\mu \) in cm²/Vsec, \(T_{ox} \) in nm
Mobility, m, relates carrier velocity to electric field,
Relationship is not linear, max velocity is around 8×10^6 cm/s

Approx i_{dsat}

$$i_{\text{dsat}} = \frac{W}{L} \frac{v \text{ sat}}{C_{\text{ox}}} \left(\frac{V_{gs} - V_{th}}{V_{gs} - V_{th} + \frac{2 \nu_{\text{sat}} L}{\mu_{\text{eff}}}} \right)^2$$

Equation works in both limits.

When completely velocity saturated:

$$i_{\text{ds}} = W C_{\text{ox}} (V_{gs} - V_{th}) \nu_{\text{max}}$$

which is independent of L

$\nu_{\text{max}} L$ term around 2.3V

Subthreshold Conduction

The threshold voltage is not a magic place

- Voltage where the channel charge is roughly equal to the doping
- Have channel charge when V_{gs} less than V_{th}

Feedback is not as strong

Gate directly controls Φ_s, not channel charge

Channel charge exponentially related to Φ_s

$$i_{\text{ds}} = I_s \times e^{\frac{V_{gs} - V_{th}}{\alpha V_t}}$$

$V_t = kT/q = 26\text{mV @}RT$

α depends on definition of V_{th}, around $0.3\mu\text{A}/\mu$

α is from cap voltage divider, around 1.3
MOS Capacitance

There is a lot more to worry about than channel capacitance.

For 0.25m technology, 5nm gate oxide
- \(C_{ox} = 6.9 \text{ fF/}\mu^2 = 1.7 \text{ fF/}\mu \) width
- Gate overlap cap \(\sim 0.2 \text{ fF/}\mu \) (per edge)
- Diffusion cap
 - 1.0 \text{ fF/}\mu^2 \) bottom plate
 - 0.3 \text{ fF/}\mu \) sidewall
- Total

\[
\begin{align*}
C_{\text{gate}} &= 1.7 \ \mu W \\
C_{\text{overlap}} &= 0.4 \ \mu W \\
C_{\text{bot}} &= 0.7 \ \mu W \\
C_{\text{side}} &= 0.6 \ \mu W + 0.4
\end{align*}
\]

MOS Scaling

With high fields, quadratic model is not very accurate for estimating scaling effects. A better model is:

\[
I_{dsat} = K W L_{\text{eff}}^{0.5} T_{ox}^{-0.8} (V_{gs} - V_{th})^{1.25}
\]

If \(L, T_{ox}, V\) all scale (note \(V\) scaling will be limited by \(V_{th}\) scaling)
- Current should remains constant per micron.
- It will be 0.6 to 0.8mA/\(\mu\)
- Current for a scaled transistor scales down by \(\alpha\)
- Voltage scaled down by \(\alpha\)
- Capacitance scales down by \(\alpha\)

\[
\forall \Delta t = CV/i = \alpha \Delta t
\]
- This assumes that \(V_{th}\) continues to scale, and this is not likely to happen.
Parameter Variations

Talking about transistors like all transistors are the same
Not true -- no two are exactly the same
Parameters of a fabrication run are generally normally distributed

Variations

There are really many parameters:

Sometimes they are correlated, and sometimes they aren’t
Corners are the extreme points on the distributions
For correlated parameters corners are pessimistic
Process Corners

Extreme points in parameter distributions (spec limits)
• Probably stress circuits at these points
• Good place to test your design

Corners:
Process parameters:
- Poly linewidth, nMOS Vt, pMOS Vt, Tox,
- metal width, oxide thickness

Operating conditions
- Temp (0-100 die temp)
- Operating voltage (die voltage)

EE371 Corners

Group parameters into transistor, and operating effects
- nMOS can be slow, typ, fast
- pMOS can be slow, typ, fast
- Vdd can be high, low
- Temp can be hot, cold

Use library file to get models
• This file sets up the temp, device models parasitics and voltage
• file is /usr/class/ee371/lib/opConditions.lib
• Contains the following conditions
Library

Label is nMOS, pMOS, Temp, Voltage
TTTT = typ nMOS, typ pMOS, room temp, nominal supply
SSSS = slow nMOS, slow pMOS, hot temp, low supply
FSSS = fast nMOS, slow pMOS, hot temp, low supply

Note that wires are not included. We will either provide a separate wire model, or you will have to create your own.

The temp and voltages are the levels that the die sees, and this is worse then the package spec.
 w.c. temp 110°C, w.c. voltage +10%, -15%

What To Look For

TTSS Must meet timing specification for part
SSSS Sometime need to hit spec here too, signal collapse
FFFF Power issues, edge rates on IO outputs, pulse collapse
SFSS Failure of ratio circuit, race conditions
FSSS Failure of ratio circuits, race conditions
etc.
Style, cont’d

To use library file:

.lib ’/usr/class/ee371/lib/opConditions.lib’ SSSS

• This calls out the set of models for the slow simulation case
• Could have used any of the others.

.lib ’/usr/class/ee371/lib/opConditions.lib’ TTSS

Can use .alter command to run simulation in many cases
• Device models are always nmos, pmos

Mname drain gate source substrate nmos
Mname drain gate source substrate pmos

Philosophical Struggle

How to analyze circuits?

• Use your intuition and your pencil and paper analysis. These are things that you understand. SPICE is prone to Garbage In / Very Pretty Garbage Out. Need to understand circuit to check SPICE, and not vice versa.

• There is enormous complexity and ugly nonlinearity in VLSI circuitry, making it potentially very difficulty to do hand analysis. Also competitive market pressure requires sophisticated circuitry (which need SPICE) on short schedules or you will be steam rolled by your competitors

So you end up doing both
Calibrating a Technology

When you get a set of models for a technology, it is a good idea to run some simple simulations to get a feeling for the technology. Here are some things that I like to run:

• Run iV curves for a few device sizes.
 Do the curves seem reasonable?
 What do they say about:
 velocity saturation, output conduction, Vbb sensitivity
 subthreshold conduction, Vth effects (DIBL, DVth(W,L))

To get a feeling for these effects, you will need to do a few simulations:

Ids vs. Vds

Look at different channel lengths (nMOS):

• Notice:
 – Difference in output slope
 – Linear gm in longer channel device
Ids vs. Vds

Look at different channel lengths (pMOS):

- Notice:
 - Difference in saturation voltage from nMOS
 - Linear gm in longer channel device, change in output slope

Ids vs. Vgs (nMOS)

Look at Vds
Vbs:

- One shows DIBL, and the other shows gamma:
 - DIBL is drain induced barrier lowering, it is when the voltage at the drain reduces the threshold voltage
Ids vs. Vgs (pMOS)

Vds

Vbs:

Gds vs. L

nMOS

pMOS
Threshold Voltage nMOS

Notice change with temp, channel length, width:

Threshold Voltage pMOS
Calibration, cont’d

We like our RC model, so we need to figure out what R and C are
• Gate Capacitance -- fF/µ

Used for two reasons, delay and power, and they are not the same

How does it depend on input slope, output slope, temp, V

Find C so the delay of 4x gate is the same in both paths
Can change pre/post gate to change input/output slope

Why have so many gates?
M=8 gate is the one we are trying to match. 1x is to make input to 2 2x nominal.

Calibration, cont’d

Gate cap for power:
• Many options, and a little tricky

• If you measure current pulled by M=2 gate, I(Vdd)
 – Includes short circuit current
 – Includes parasitic cap current
diodes, and gate overlap on M=2 gate!

• Measure the current going into M=8 gate
 – Add 0V voltage source between driver and gate
 C = i/Vf
 – I think this is the 'right' answer
Calibration, cont’d

Resistance of a transistor -- $\Omega \mu/W$
Know gate effective cap, so $R = \Delta T/C$
How does R vary with Temp, input slope, V

- How do R’s add (two transistors in series)?
 replace inverter with enable tristate inverter, but watch parasitic cap

What for parasitic capacitance changing your measurement.
Since can’t remove some parasitics, measure resistances will large load caps (large FO)

Calibration, cont’d

Effective capacitance of transistor parasitics -- fF/μ or fF/μ^2
- Gate overlap, diffusion edge, area
 - Replace M=8 inverter with diode model
gate width, PS, AS control these parasitics
 W, AS=0, PS=0 give gate overlap
 $W=0.4\mu m$, AS= PS=0 might not give area component
 If model has series resistance, it might effect measurement
 - For diffusion cap C for rising and falling transitions are different!

Wire parameters
- Cap fF/μ, ratio to gate cap
- Coupling
- Resistance, RC product
Now What?

Use your simple models to reason about circuit
• Look at different trade-offs
• Try to determine what is important
• If you need more information, do some sims to build new model
• Come up with 'good' first pass design

And then simulate it!
• First look at a few of the corners that might be interesting
• See if the results make sense
 If not, check the circuit schematics
 Check you models (where does it break down -- learn)
• Check it over many corners

Simulation Issues

Conflict:
• Simulation is cheap, silicon revs are VERY expensive
 – Don’t scrimp when you construct a SPICE deck
 – Simulate the real stuff under real conditions
 Include the real input waveform and load devices

• The more complex the deck, the more confusing the results
• will be
 – Easier to make mistakes in entry
 – Simulating the wrong thing
 – Interaction of lots of small mistakes
 – Hard to debug
 – Slow simulations / long revision times
Compromise

Start simple, and then add complexity
- Start with an understandable and predictable simulation deck
- Add more complexity, and check at each step that the results make sense
- End up with complete simulation file

Need to remember to add all the effects you need to model

Matching

If you want two transistor to match you need to be very careful
Almost anything will make them different
In SPICE all transistors match perfectly,
You need to add mismatch explicitly to model problem

Things you need to avoid:
X, Y in silicon are not exact the same.
Match -> orient them the same way
Is this ok?

Implant not 90° asymmetry
Matching

Need to worry about poly alignment

In this case diffusion resistance, and cap will not match

Solution:
- Make sure current flow in the same direction in matched transistors
- Easy if all the transistors are folded

Matching

Poly width needs to be carefully controlled
- Etch rate depends slightly on the local density of poly
- To match transistors local poly density needs to be the same.

End transistors will be different, next to end might be effected too
Statistical Matching

Even when you do everything right, there are still random errors:
 Vth errors
 Current matching

Data indicates that the matching depends on the $\sqrt{L_{\text{eff}}W_{\text{eff}}}$

\[\sigma(V_{\text{th}}) = 0.6V_{\text{Tox}}/\sqrt{L_{\text{eff}}W_{\text{eff}}} \]
 Need to measure Tox and L,W in same units

\[\sigma(I_{\text{ds}}) = 2\% \mu/\sqrt{L_{\text{eff}}W_{\text{eff}}} \]