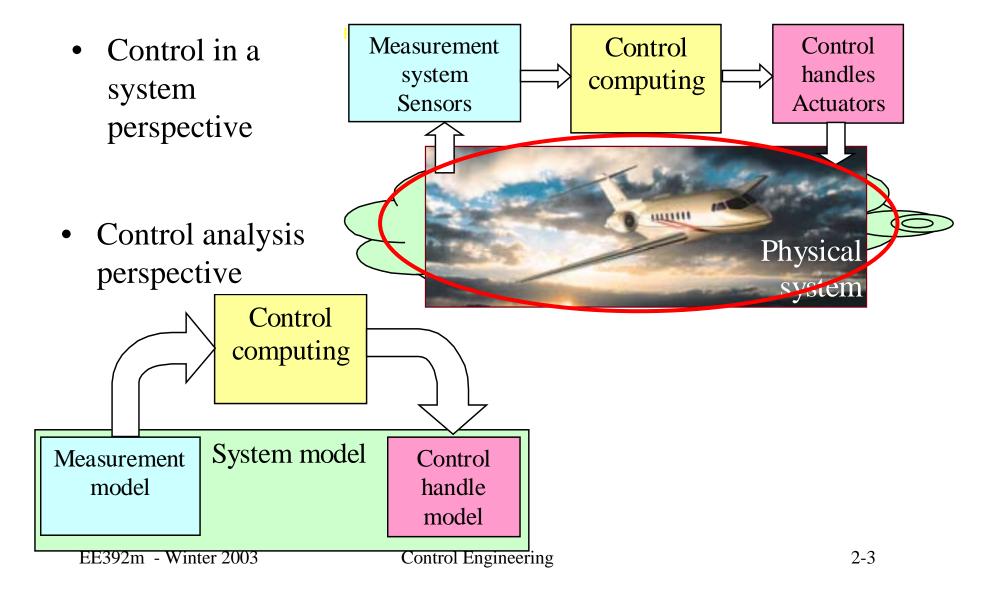
Lecture 2 - Modeling and Simulation

- Model types: ODE, PDE, State Machines, Hybrid
- Modeling approaches:
 - physics based (white box)
 - input-output models (black box)
- Linear systems
- Simulation
- Modeling uncertainty

Goals

- Review dynamical modeling approaches used for control analysis and simulation
- Most of the material us assumed to be known
- Target audience
 - people specializing in controls practical

Modeling in Control Engineering



Models

- Model is a mathematical representations of a system
 - Models allow simulating and analyzing the system
 - Models are never exact
- Modeling depends on your goal
 - A single system may have many models
 - Always understand what is the purpose of the model
 - Large 'libraries' of standard model templates exist
 - A conceptually new model is a big deal
- Main goals of modeling in control engineering
 - conceptual analysis
 - detailed simulation

Modeling approaches

- Controls analysis uses deterministic models. Randomness and uncertainty are usually not dominant.
- White box models: physics described by ODE and/or PDE
- Dynamics, Newton mechanics

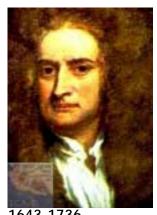
$$\dot{x} = f(x, t)$$

• Space flight: add control inputs u and measured outputs y

$$\dot{x} = f(x, u, t)$$

$$y = g(x, u, t)$$

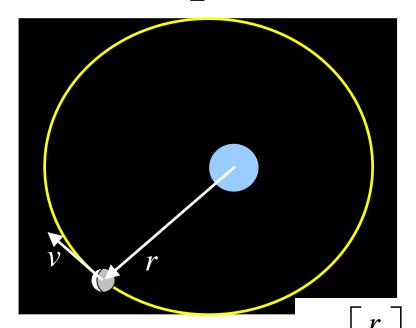
Orbital mechanics example



- Newton's mechanics
 - fundamental laws
 - dynamics

$$\dot{v} = -\gamma m \cdot \frac{r}{|r|^3} + F_{pert}(t)$$

$$\dot{r} = v$$



EE392m - Winter 2003

Laplace

- computational dynamics (pencil & paper computations)
- deterministic model-based prediction

$$\dot{x} = f(x, t)$$

$$x =$$

*r*₂

Control Engineering

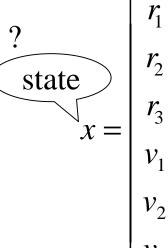
Orbital mechanics example

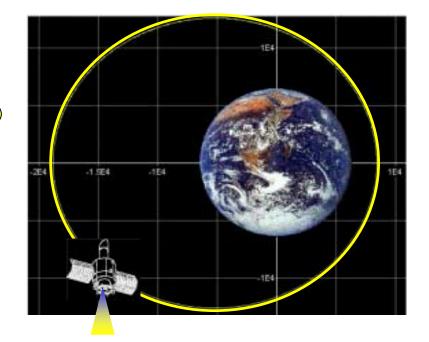
Space flight mechanics

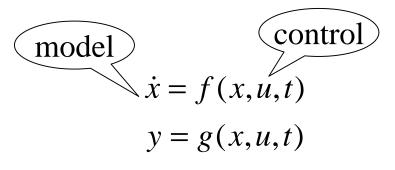
vace flight mechanics
$$\dot{v} = -\gamma m \cdot \frac{r}{|r|^3} + F_{pert}(t) + u(t)$$

 $\dot{r} = v$

$$y = \begin{bmatrix} \theta(r) \\ \varphi(r) \end{bmatrix}$$







Gene expression model

	System variables and symbols
0	Total operon concentration
O_F	Free operon concentration
\dot{M}_F	Free mRNA concentration
E	Total anthranilate synthase concentration
E_A	Active anthranilate synthase concentration
T	Tryptophan concentration
R	Total repressor concentration
R_A	Active repressor concentration
$P^{''}$	
ρ	mRNA polymerase concentration Ribosomal concentration
D	mRNA destroying enzyme concentration

Santillán-Mackey Model Equations

$$\dot{O}_{F} = \frac{K_{r}}{K_{r} + R_{A}(T)} \{\mu O - k_{p} P[O_{F}(t) - O_{F}(t - \tau_{p})e^{-\mu\tau_{p}}]\} - \mu O_{F}(t)$$

$$\dot{M}_{F} = k_{p} P O_{F}(t - \tau_{m})e^{-\mu\tau_{m}} [1 - A(T)] - k_{p} \rho [M_{F}(t) - M_{F}(t - \tau_{p})e^{-\mu\tau_{p}}] - (k_{d}D + \mu)M_{F}(t)$$

$$\dot{E} = \frac{1}{2} k_{p} \rho M_{F}(t - \tau_{e})e^{-\mu\tau_{e}} - (\gamma + \mu)E(t)$$

$$\dot{T} = K E_{A}(E, T) - G(T) + F(T, T_{ext}) - \mu T(t)$$

$$R_{A}(t) := R \frac{T(t)}{T(t) + K_{t}}$$

$$A(T) := b(1 - e^{-T(t)/c})$$

$$E_{A}(E, T) := \frac{K_{i}^{n} H}{K_{i}^{n} H + T^{n} H(t)} E(t)$$

$$G(T) := g \frac{T(t)}{T(t) + K_{g}}$$

$$F(T, T_{ext}) := d \frac{T_{ext}}{e + T_{ext}[1 + T(t)/f]}$$

Sampled Time Models

- Time is often sampled because of the digital computer use
 - computations, numerical integration of continuous-time ODE

$$x(t+d) \approx x(t) + d \cdot f(x,u,t), \qquad t = kd$$

digital (sampled time) control system

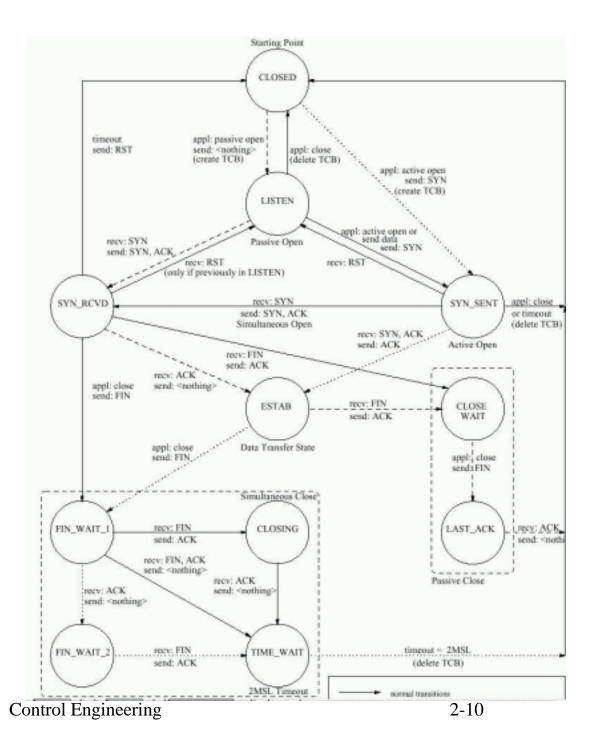
$$x(t+d) = f(x,u,t)$$
$$y = g(x,u,t)$$

- Time can be sampled because this is how a system works
- Example: bank account balance
 - -x(t) balance in the end of day t
 - -u(t) total of deposits and withdrawals that day
 - -y(t) displayed in a daily statement
- Unit delay operator z^{-1} : $z^{-1}x(t) = x(t-1)$

$$x(t+1) = x(t) + u(t)$$
$$y = x$$

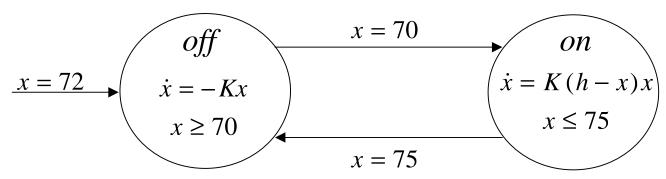
Finite state machines

• TCP/IP State Machine



Hybrid systems

- Combination of continuous-time dynamics and a state machine
- Thermostat example
- Tools are not fully established yet



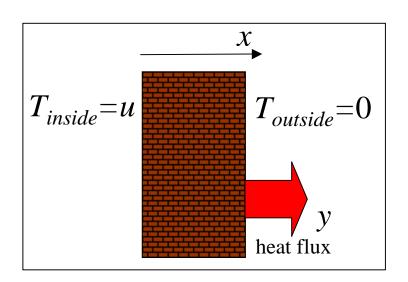
PDE models

- Include functions of spatial variables
 - electromagnetic fields
 - mass and heat transfer
 - fluid dynamics
 - structural deformations
- Example: sideways heat equation

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$

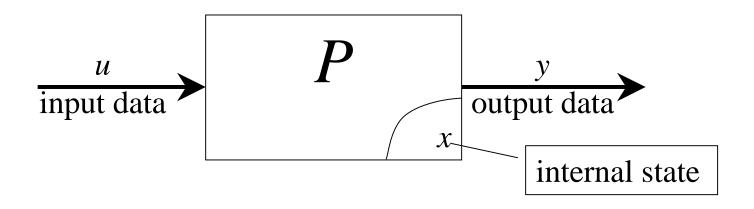
$$T(0) = u; \qquad T(1) = 0$$

$$y = \frac{\partial T}{\partial x} \Big|_{x=1}$$



Black-box models

• Black-box models - describe *P* as an operator



- AA, ME, Physics state space, ODE and PDE
- EE black-box,
- ChE use anything
- CS state machines, probablistic models, neural networks

Linear Systems

- Impulse response
- FIR model
- IIR model
- State space model
- Frequency domain
- Transfer functions
- Sampled vs. continuous time
- Linearization

Linear System (black-box)

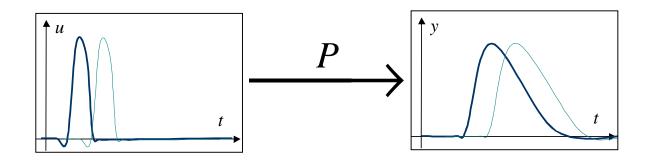
Linearity

$$u_1(\cdot) \xrightarrow{P} y_1(\cdot) \qquad u_2(\cdot) \xrightarrow{P} y_2(\cdot)$$

$$au_1(\cdot) + bu_2(\cdot) \xrightarrow{P} ay_1(\cdot) + by_2(\cdot)$$

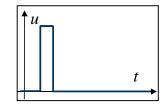
• Linear Time-Invariant systems - LTI

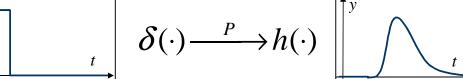
$$u(\cdot - T) \xrightarrow{P} y(\cdot - T)$$

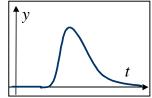


Impulse response

Response to an input impulse







- Sampled time: t = 1, 2, ...
- Control history = linear combination of the impulses system response = linear combination of the impulse responses

$$u(t) = \sum_{k=0}^{\infty} \delta(t-k)u(k)$$

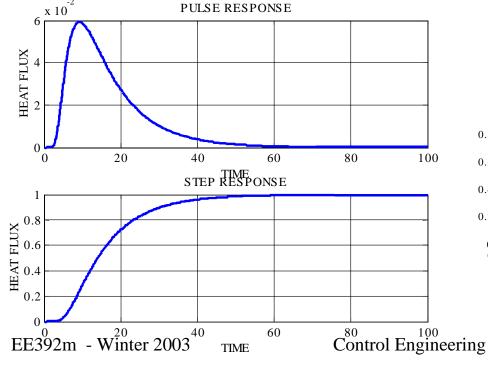
$$y(t) = \sum_{k=0}^{\infty} h(t-k)u(k) = (h*u)(t)$$

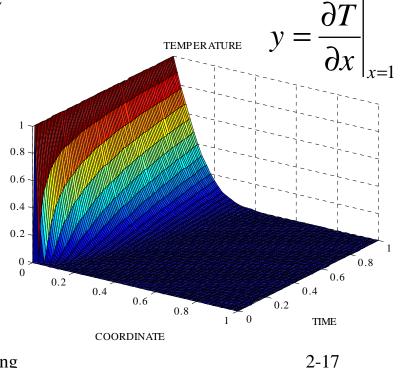
Linear PDE System Example

- Heat transfer equation,
 - boundary temperature input u
 - heat flux output y

 $\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$ $u = T(0) \qquad T(1) = 0$

Pulse response and step response

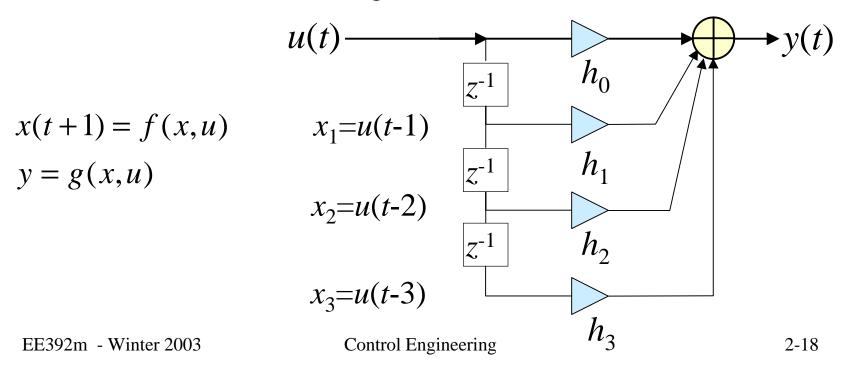




FIR model

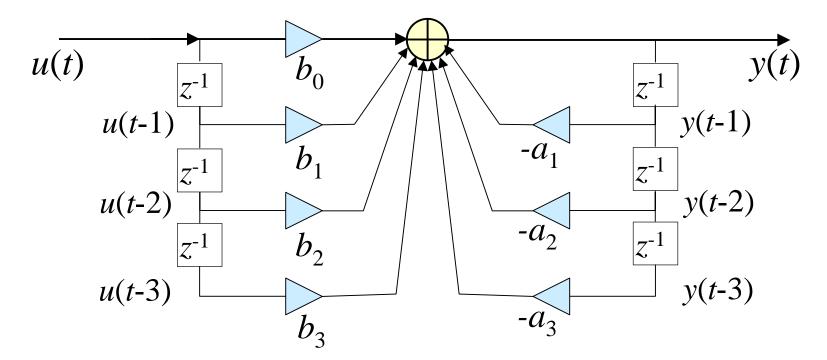
$$y(t) = \sum_{k=0}^{N} h_{FIR}(t-k)u(k) = (h_{FIR} * u)(t)$$

- FIR = Finite Impulse Response
- Cut off the trailing part of the pulse response to obtain FIR
- FIR filter state x. Shift register



IIR model

- IIR model: $y(t) = -\sum_{k=1}^{n_a} a_k y(t-k) + \sum_{k=0}^{n_b} b_k u(t-k)$
- Filter states: $y(t-1), ..., y(t-n_a), u(t-1), ..., u(t-n_b)$



IIR model

- Matlab implementation of an IIR model: filter
- Transfer function realization: unit delay operator z^{-1}

$$y(t) = H(z)u(t)$$

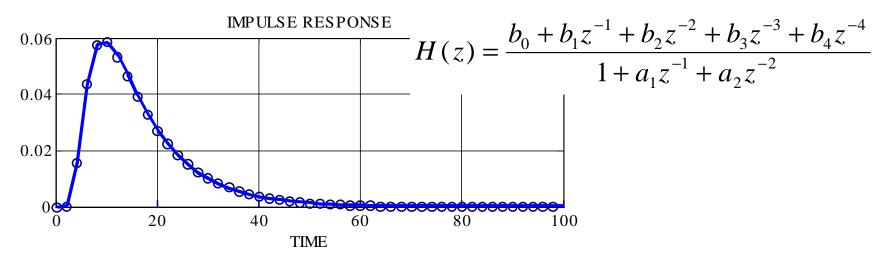
$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_N z^{-N}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}} = \frac{b_0 z^N + b_1 z^{N-1} + \dots + b_N}{z^N + a_1 z^{N-1} + \dots + a_N}$$

$$\underbrace{\left(1 + a_1 z^{-1} + \dots + a_N z^{-N}\right)}_{A(z)} y(t) = \underbrace{\left(b_0 + b_1 z^{-1} + \dots + b_N z^{-N}\right)}_{B(z)} u(t)$$

• FIR model is a special case of an IIR with A(z) = 1 (or z^N)

IIR approximation example

- Low order IIR approximation of impulse response: (**prony** in Matlab Signal Processing Toolbox)
- Fewer parameters than a FIR model
- Example: sideways heat transfer
 - pulse response h(t)
 - approximation with IIR filter $a = [a_1 \ a_2], \ b = [b_0 \ b_1 \ b_2 \ b_3 \ b_4]$



Linear state space model

• Generic state space model:

$$x(t+1) = f(x,u,t)$$
$$y = g(x,u,t)$$

- LTI state space model
 - another form of IIR model
 - physics-based linear system model

$$x(t+1) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

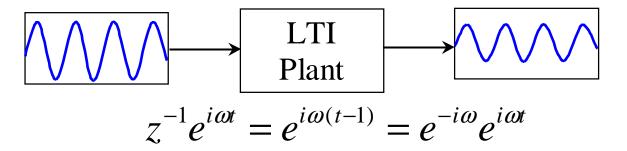
- Transfer function of an LTI model
 - defines an IIR representation

$$y = \left[(Iz - A)^{-1}B + D \right] \cdot u$$
$$H(z) = \left(Iz - A \right)^{-1}B + D$$

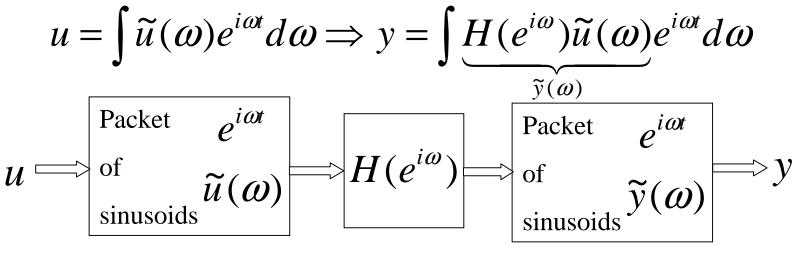
Matlab commands for model conversion: help ltimodels

Frequency domain description

• Sinusoids are eigenfunctions of an LTI system: y = H(z)u



• Frequency domain analysis



EE392m - Winter 2003

Control Engineering

Frequency domain description

Bode plots:

$$\int M(\omega) = |H(e^{i\omega})|$$

$$\varphi(\omega) = \arg H(e^{i\omega})$$

Bode Diagram

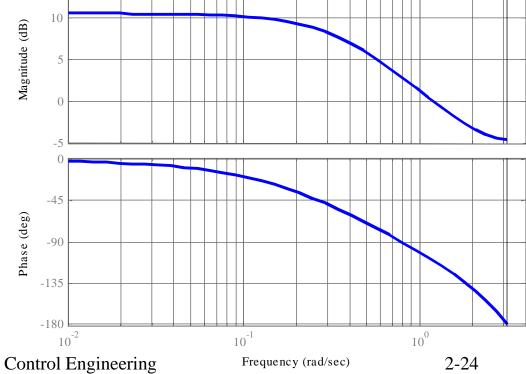
$$u=e^{i\omega t}$$

$$u = e^{i\omega t}$$
$$y = H(e^{i\omega})e^{i\omega t}$$

Example:

$$H(z) = \frac{1}{z - 0.7}$$

• |*H*| is often measured in dB



EE392m - Winter 2003

Black-box model from data

- Linear black-box model can be determined from the data, e.g., step response data
- This is called model identification
- Lecture 8

z-transform, Laplace transform

• Formal description of the transfer function:

- function of complex variable z
- analytical outside the circle $|z| \ge r$
- for a stable system $r \le 1$

$$H(z) = \sum_{k=0}^{\infty} h(k)z^{-k}$$

• Laplace transform:

- function of complex variable s
- analytical in a half plane $\text{Re } s \leq a$
- for a stable system $a \le 1$

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{st}dt$$
$$\hat{y}(s) = H(s)\hat{u}(s)$$

Stability analysis

- Transfer function poles tell you everything about stability
- Model-based analysis for a simple feedback example:

$$y = H(z)u$$

$$u = -K(y - y_d)$$

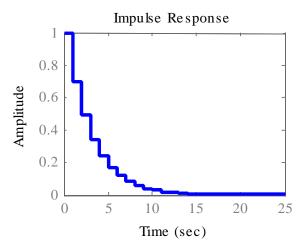
$$y = \frac{H(z)K}{1 + H(z)K} y_d = L(z)y_d$$

- If H(z) is a rational transfer function describing an IIR model
- Then L(z) also is a rational transfer function describing an IIR model

Poles and Zeros <=> System

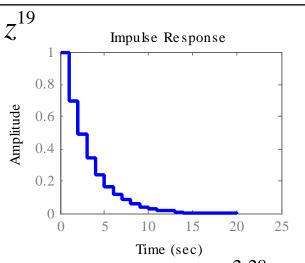
- ...not quite so!
- Example:

$$y = H(z)u = \frac{z}{z - 0.7}$$



FIR model - truncated IIR

FIR model - truncated IIR
$$y = H_{FIR}(z)u = \frac{z^{19} + 0.7z^{18} + 0.49z^{17} + ... + 0.001628z + 0.00114}{z^{19}}$$



IIR/FIR example - cont'd

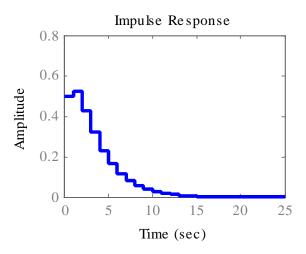
Feedback control:

$$y = H(z)u = \frac{z}{z - 0.7}$$
$$u = -K(y - y_d) = -(y - y_d)$$

Closed loop:

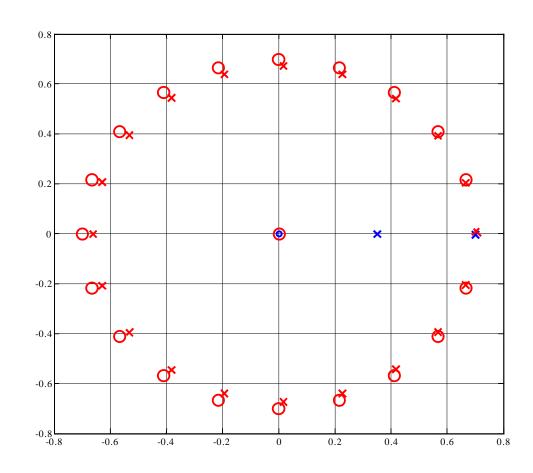
$$y = \frac{H(z)}{1 + H(z)}u = L(z)u$$

$$y = \frac{H_{FIR}(z)}{1 + H_{FIR}(z)}u = L_{FIR}(z)u$$



IIR/FIR example - cont'd Poles and zeros

- Blue: Loop
 with IIR
 model poles x
 and zeros •
- Red: Loop with FIR model poles x and zeros •



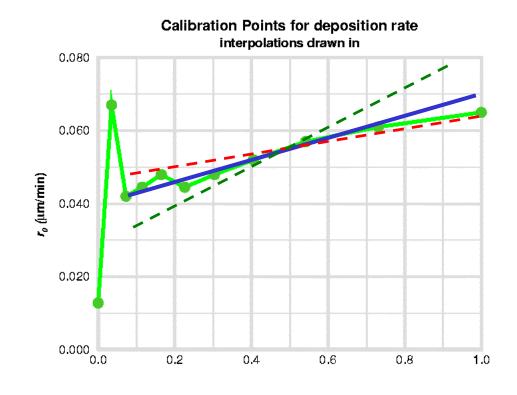
LTI models - summary

- Linear system can be described by impulse response
- Linear system can be described by frequency response = Fourier transform of the impulse response
- FIR, IIR, State-space models can be used to obtain close approximations of a linear system
- A pattern of poles and zeros can be very different for a small change in approximation error.
- Approximation error <=> model uncertainty

Nonlinear map linearization

- Nonlinear detailed model
- Linear conceptual design model
- Static map, gain range, sector linearity
- Differentiation, secant method

$$y = f(u) \approx \frac{\Delta f}{\Delta u} (u - u_0)$$



Nonlinear state space model linearization

• Linearize the r.h.s. map $\dot{x} = f(x, u) \approx \frac{\Delta f}{\Delta x} \underbrace{(x - x_0)}_{q} + \frac{\Delta f}{\Delta u} \underbrace{(u - u_0)}_{v}$ $\dot{q} = Aq + Bv$

Secant method

$$\left[\frac{\Delta f}{\Delta x}\right]^{j} = \frac{f(x+s_{j})}{s_{j}}$$

$$s_{j} = \begin{bmatrix} 0 & \dots & 1 & \dots & 0 \end{bmatrix}$$

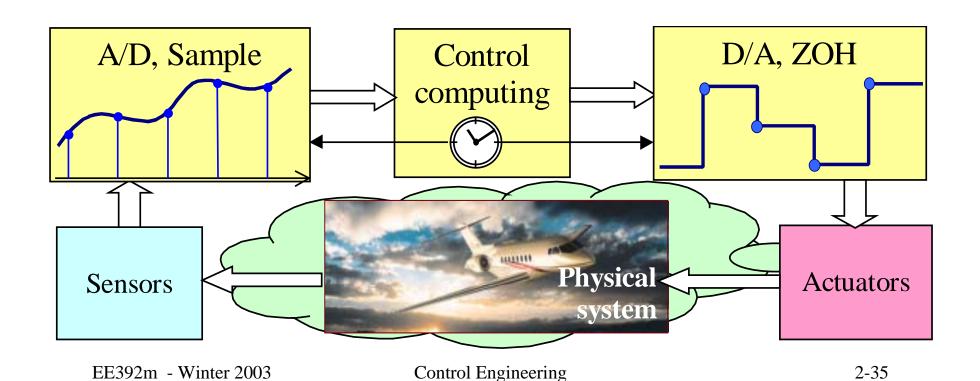
• Or ... capture a response to small step and build an impulse response model

Sampled time vs. continuous time

- Continuous time analysis (Digital implementation of continuous time controller)
 - Tustin's method = trapezoidal rule of integration for $H(s) = \frac{1}{s}$ $H(s) \to H_s(z) = H\left(s = \frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}}\right)$
 - Matched Zero Pole: map each zero and a pole in accordance with $s = e^{sT}$
- Sampled time analysis (Sampling of continuous signals and system)

Sampled and continuous time

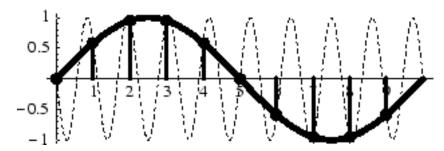
- Sampled and continuous time together
- Continuous time physical system + digital controller
 - ZOH = Zero Order Hold



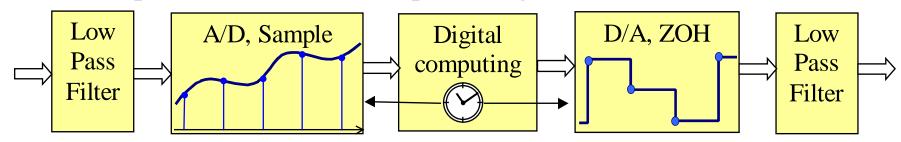
Signal sampling, aliasing

• Nyquist frequency:

$$\omega_{\rm N} = \frac{1}{2}\omega_{\rm S}; \ \omega_{\rm S} = 2\pi/T$$

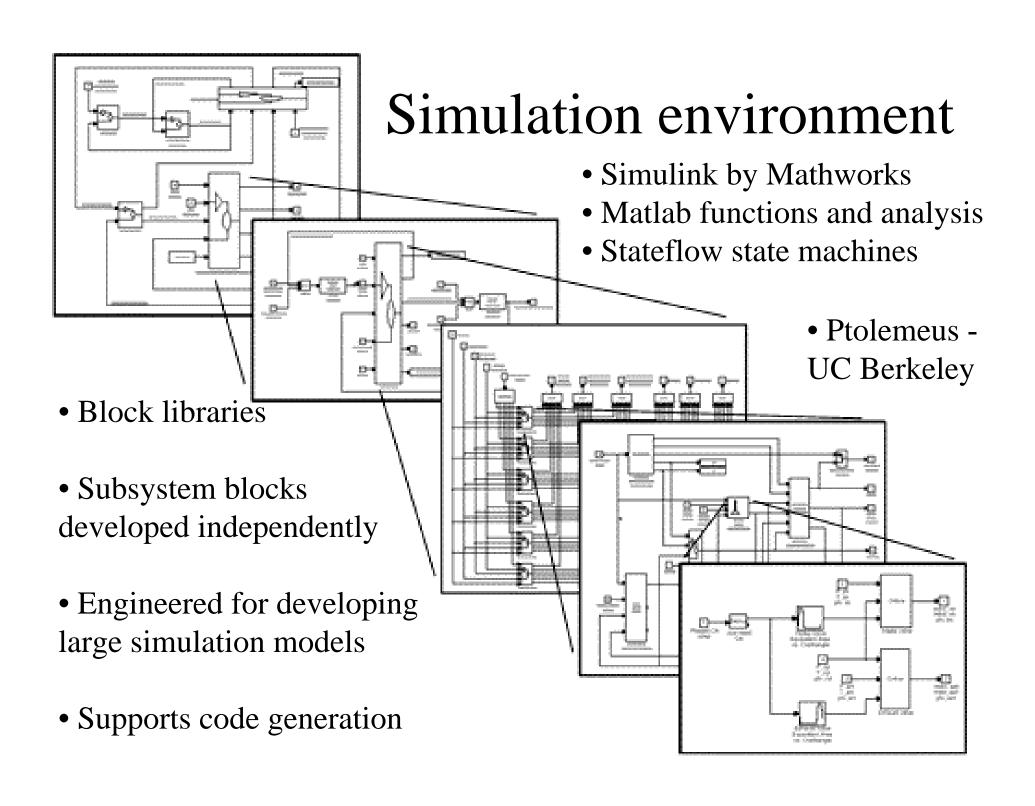


- Frequency folding: $k\omega_s \pm \omega$ map to the same frequency ω
- Sampling Theorem: sampling is OK if there are no frequency components above ω_N
- Practical approach to anti-aliasing: low pass filter (LPF)
- Sampled—continuous: impostoring



Simulation

- ODE solution
 - dynamical model: $\dot{x} = f(x, t)$
 - Euler integration method: $x(t+d) = x(t) + d \cdot f(x(t), t)$
 - Runge-Kutta: ode45 in Matlab
- Can do simple problems by integrating ODEs
- Issues:
 - mixture of continuous and sampled time
 - hybrid logic (conditions)
 - state machines
 - stiff systems, algebraic loops
 - systems integrated out of many subsystems
 - large projects, many people contribute different subsystems



Model block development

- Look up around for available conceptual models
- Physics conceptual modeling
- Science (analysis, simple conceptual abstraction) vs. engineering (design, detailed models out of simple blocks)

Modeling uncertainty

- Modeling uncertainty:
 - unknown signals
 - model errors
- Controllers work with real systems:
 - Signal processing: data \rightarrow algorithm \rightarrow data
 - Control: algorithms in a feedback loop with *a real* system
- BIG question: Why controller designed for a model would *ever* work with a *real* system?
 - Robustness, gain and phase margins,
 - Control design model, vs. control analysis model
 - Monte-Carlo analysis a fancy name for a desperate approach