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Lecture 2 - Modeling and Simulation

• Model types: ODE, PDE, State Machines, Hybrid
• Modeling approaches:

– physics based (white box)
– input-output models (black box)

• Linear systems
• Simulation
• Modeling uncertainty
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Goals

• Review dynamical modeling approaches used for control
analysis and simulation

• Most of the material us assumed to be known
• Target audience

– people specializing in controls - practical
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Modeling in Control Engineering
• Control in a

system
perspective
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Models

• Model is a mathematical representations of a system
– Models allow simulating and analyzing the system
– Models are never exact

• Modeling depends on your goal
– A single system may have many models
– Always understand what is the purpose of the model
– Large ‘libraries’ of standard model templates exist
– A conceptually new model is a big deal

• Main goals of modeling in control engineering
– conceptual analysis
– detailed simulation
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Modeling approaches
• Controls analysis uses deterministic models. Randomness and

uncertainty are usually not dominant.
• White box models: physics described by ODE and/or PDE
• Dynamics, Newton mechanics

• Space flight: add control inputs  u  and measured outputs  y
),( txfx =&
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Orbital mechanics example

• Newton’s mechanics
– fundamental laws
– dynamics
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• Laplace
– computational dynamics

(pencil & paper computations)
– deterministic model-based

prediction
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Orbital mechanics example

• Space flight mechanics

• Control problems: u - ?
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Gene
expression
model
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Sampled Time Models
• Time is often sampled because of the digital computer use

– computations, numerical integration of continuous-time ODE

– digital (sampled time) control system

• Time can be sampled because this is how a system works
• Example: bank account balance

– x(t) - balance in the end of day  t
– u(t) - total of deposits and withdrawals that day
– y(t) - displayed in a daily statement

• Unit delay operator z-1: z-1 x(t) = x(t-1)
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Finite state
machines

• TCP/IP State Machine



EE392m  - Winter 2003 Control Engineering 2-11

Hybrid systems
• Combination of continuous-time dynamics and a state machine
• Thermostat example
• Tools are not fully established yet
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PDE models
• Include functions of spatial variables

– electromagnetic fields
– mass and heat transfer
– fluid dynamics
– structural deformations

• Example: sideways heat equation
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Black-box models

• Black-box models - describe P as an operator

– AA, ME, Physics - state space, ODE and PDE
– EE - black-box,
– ChE - use anything
– CS - state machines, probablistic models, neural networks

P
x

u
input data

y
output data

internal state
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Linear Systems

• Impulse response
• FIR model
• IIR model
• State space model
• Frequency domain
• Transfer functions
• Sampled vs. continuous time
• Linearization
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Linear System (black-box)

• Linearity

• Linear Time-Invariant systems - LTI
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Impulse response
• Response to an input impulse

• Sampled time: t = 1, 2, ...
• Control history = linear combination of the impulses     ⇒

system response = linear combination of the impulse responses
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Linear PDE System Example

• Heat transfer equation,
– boundary temperature input u
– heat flux output y

• Pulse response and step response
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FIR model

• FIR = Finite Impulse Response
• Cut off the trailing part of the pulse response to obtain FIR
• FIR filter state x. Shift register
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IIR model
• IIR model:

• Filter states:  y(t-1), …, y(t-na ), u(t-1), …, u(t-nb )
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IIR model
• Matlab implementation of an IIR model: filter
• Transfer function realization: unit delay operator z-1
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• FIR model is a special case of an IIR with  A(z) =1 (or zN )
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IIR approximation example
• Low order IIR approximation of impulse response:

(prony in Matlab Signal Processing Toolbox)
• Fewer parameters than a FIR model
• Example: sideways heat transfer

– pulse response h(t)
– approximation with IIR filter a = [a1  a2 ],  b=[b0  b1  b2  b3  b4 ]
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Linear state space model
• Generic state space model:

• LTI state space model
– another form of IIR model
– physics-based linear system model

• Transfer function of an LTI model
– defines an IIR representation

• Matlab commands for model conversion: help ltimodels
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Frequency domain description
• Sinusoids are eigenfunctions of an LTI  system:

LTI
Plant
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Frequency domain description
• Bode plots:
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Black-box model from data

• Linear black-box model can be determined from the data,
e.g., step response data

• This is called model identification
• Lecture 8
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z-transform, Laplace transform
• Formal description of the transfer function:

– function of complex variable z
– analytical outside the circle |z|≥r
– for a stable system  r ≤ 1
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• Laplace transform:
– function of complex variable s
– analytical in a half plane  Re s ≤ a
– for a stable system  a ≤ 1
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Stability analysis

• Transfer function poles tell you everything about stability
• Model-based analysis for a simple feedback example:
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• If H(z) is a rational transfer function describing an IIR
model

• Then L(z) also is a rational transfer function describing an
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Poles and Zeros <=> System
• …not quite so!
• Example:
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IIR/FIR example - cont’d
• Feedback control:

• Closed loop:
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LTI models - summary

• Linear system can be described by impulse response
• Linear system can be described by frequency response =

Fourier transform of the impulse response
• FIR, IIR, State-space models can be used to obtain close

approximations of a linear system
• A pattern of poles and zeros can be very different for a

small change in approximation error.
• Approximation error <=> model uncertainty
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Nonlinear map linearization
• Nonlinear - detailed

model
• Linear - conceptual

design model
• Static map, gain

range, sector
linearity

• Differentiation,
secant method

)()( 0uu
u
fufy −

∆
∆≈=



EE392m  - Winter 2003 Control Engineering 2-33

Nonlinear state space model
linearization

• Linearize the r.h.s. map

• Secant method

• Or … capture a response to small step and build an
impulse response model
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Sampled time vs. continuous time

• Continuous time analysis (Digital implementation of
continuous time controller)
– Tustin’s method = trapezoidal rule of integration for

– Matched Zero Pole: map each zero and a pole in accordance with

• Sampled time analysis (Sampling of continuous signals
and system)
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Sampled and continuous time
• Sampled and continuous time together
• Continuous time physical system + digital controller

– ZOH = Zero Order Hold

Sensors

Control
computing

ActuatorsPhysical
system

D/A, ZOHA/D, Sample
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Signal sampling, aliasing

• Nyquist frequency:
ωN= ½ωS; ωS= 2π/T

• Frequency folding: kωS±ω map to the same frequency ω
• Sampling Theorem: sampling is OK if there are no frequency

components above ωN

• Practical approach to anti-aliasing: low pass filter (LPF)
• Sampled→continuous: impostoring

Digital
computing

D/A, ZOHA/D, SampleLow
Pass
Filter

Low
Pass
Filter
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Simulation
• ODE solution

– dynamical model:
– Euler integration method:
– Runge-Kutta: ode45 in Matlab

• Can do simple problems by integrating ODEs
• Issues:

– mixture of continuous and sampled time
– hybrid logic (conditions)
– state machines
– stiff systems, algebraic loops
– systems integrated out of many subsystems
– large projects, many people contribute different subsystems
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Simulation environment

• Block libraries

• Subsystem blocks
developed independently

• Engineered for developing
large simulation models

• Supports code generation

• Simulink by Mathworks
• Matlab functions and analysis
• Stateflow state machines

• Ptolemeus -
UC Berkeley
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Model block development
• Look up around for available conceptual models
• Physics - conceptual modeling
• Science (analysis, simple conceptual abstraction) vs.

engineering (design, detailed models - out of simple blocks)
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Modeling uncertainty
• Modeling uncertainty:

– unknown signals
– model errors

• Controllers work with real systems:
– Signal processing: data → algorithm → data
– Control: algorithms in a feedback loop with a real system

• BIG question: Why controller designed for a model would
ever work with a real system?
– Robustness, gain and phase margins,
– Control design model, vs. control analysis model
– Monte-Carlo analysis - a fancy name for a desperate approach


