# Lecture 3 - Model-based Control Engineering

- Control application and a platform
- Systems platform: hardware, systems software. Development steps
- Model-based design
- Control solution deployment and support
- Control application areas

## Generality of control

- Modeling abstraction
- Computing element software
- System, actuator, and sensor physics might be very different
- Control and system engineering is used across many applications
  - similar principles
  - transferable skills
  - mind the application!

# System platform for control computing

- Workstations
  - advanced process control
  - enterprise optimizers
  - computing servers
    (QoS/admission control)
- Specialized controllers:
  - PLC, DCS, motion controllers, hybrid controllers





EE392m - Winter 2003

# System platform for control computing

- Embedded:  $\mu P$  + software
- DSP

• FPGA



• ASIC / SoC



Complex-inte pipeline PCI-X bridge GPB 32 x 32 Simple-intege BTAC SDRAM DDB pipeline MML controller 13-bit ad GPR BHT 4K 32 x 32 Load-store pipeline DCR bus JTAG Interrupt 440 CPU and timers Debug Trace MAL 48 internal 13 external Interrupt interrupts controlle (4-channel) On-chip peripheral bus (OPB) 32 bits, 66 MHz Ethernet0 Ethernet MAC External peripheral bus GPT MAC 1 MII or 2 RMII 10/100 MHz

*MPC555* 

EE392m - Winter 2003



Control Engineering

## System platform, cont'd

- Analog/mixed electric circuits
  - power controllers
  - RF circuits
- Analog/mixed other
  - Gbs optical networks



## Controls development cycle

- Analysis and modeling
  - physical model, or empirical, or data driven
  - use a simplified design model
  - system trade study defines system design
- Heavy use of CAD tools
- Simulation
  - design validation using detailed performance model
- System development
  - control application, software platform, hardware platform
- Validation and verification
  - against initial specs
- Certification/commissioning

Control application software development cycle

- Matlab+toolboxes
- Simulink
- Stateflow
- Real-time Workshop

C



### Hardware-in-the-loop simulation

- Aerospace
- Process control
- Automotive



# Embedded Software Development





EE392m - Winter 2003



## Control Technology

- Science
  - abstraction
  - concepts
  - simplified models
- Engineering
  - building new things
  - constrained resources: time, money,
- Technology
  - repeatable processes
  - control platform technology
  - control engineering technology

## Controls development cycle



EE392m - Winter 2003

### Controls analysis



# Algorithms/Analysis

Much more than real-time control feedback computations

- modeling
- identification
- tuning
- optimization
- feedforward
- feedback
- estimation and navigation
- user interface
- diagnostics and system self-test
- system level logic, mode change

## Practical Issues of Control Design

- Technical requirements
- Economics: value added, # of replications
  - automotive, telecom, disk drives millions of copies produced
  - space, aviation unique to dozens to several hundreds
  - process control each process is unique, hundreds of the same type
- Developer interests
- Integration with existing system features
- Skill set in engineering development and support
- Field service/support requirements
- Marketing/competition, creation of unique IP
- Regulation/certification: FAA/FDA

# Major control applications

Specialized control groups, formal development processes

- Aviation
  - avionics: Guidance, Navigation, & Control
  - propulsion engines
  - vehicle power and environmental control
- Automotive
  - powertrain
  - suspension, traction, braking, steering
- Disk drives
- Industrial automation and process control
  - process industries: refineries, pulp and paper, chemical
  - semiconductor manufacturing processes
  - home and buildings

EE392m - Winter 2003

# Commercial applications

Advanced design - commercial

- Embedded mechanical
  - mechatronics/drive control
- Robotics
  - lab automation
  - manufacturing plant robots (e.g., automotive)
  - semiconductors
- Power
  - generation and transmission
- Transportation
  - locomotives, elevators
  - marine
- Nuclear engineering EE392m - Winter 2003

# High-performance applications

Advanced design

- Defense and space
  - aero, ground, space vehicles piloted and unmanned
  - missiles/munitions
  - comm and radar: ground, aero, space
  - campaign control: C4ISR
  - directed energy
- Science instruments
  - astronomy
  - accelerators
  - fusion: TOKAMAKs, LLNL ignition

## Embedded applications

No specialized control groups

- Embedded controllers
  - consumer
  - test and measurement
  - power/current
  - thermal control
- Telecom
  - PLLs, equalizers
  - antennas, wireless, las comm
  - flow/congestion control
  - optical networks analog, physics

# Emerging control applications

A few selected cases

• Biomedical

- life support: pacemakers anesthesia
- diagnostics: MRI scanners, etc
- ophthalmology
- bio-informatics equipment
- robotics surgery
- Computing
  - task/load balancing
- Finance and economics
  - trading