Outline

– Class logistics
– Introductory lecture on Intelligent Energy Systems
Instructors

• Daniel O’Neill, Consulting Professor in EE
 – Networks and Demand Response
 – Executive and venture capital experience
 – www.stanford.edu/~dconeill

• Dimitry Gorinevsky, Consulting Professor in EE
 – Information Decision and Control Applications
 – Broad industrial experience in advanced systems
 – www.stanford.edu/~gorin
Logistics for the Course

• 1 unit CR/NC

• Weekly on Tuesdays
 – The room and time might change!
 – Watch the class website announcements

• Two introductory lectures
 – Grid Overview – Dan
 – Monitoring Basics – Dimitry

• Eight lectures by industry leaders

• Final class
Current Speakers

• April 17, Grid Analytics - T&D power equipment diagnosis/prognosis thru Smart Grid technologies, Alex Rojas, GE
• April 24, Advanced Sensors and Monitoring & Diagnostics for Gas Turbines in GE, Vivek V. Badami and Scott Hoyte, GE Energy
• May 1, Data mining techniques to enhance sustainability of data centers, Manish Marwah - HP
• May 8, GridSpice, Amit Narayan
• May 15, Trevor Baily - UTC
• May 22, Communication Methods for Energy Management, John Parello - Cisco
• May 29, The Promise of Renewables, Rick Geiger - Cisco
• June 5, Datta Godbole - Honeywell
Course Requirements

• Requirements:
 – Attendance

• 1-2 page proposal for intelligent energy concept, research, or product, based on class presentations
 – Teams of up to three people, one person is acceptable
 – Due June 5

• Top three proposals will be presented at the scheduled final time
 – Will be considered by Stanford faculty and industrial presenters to receive research funding
 – The best proposal will be archived on class website including author info; expect PageRank 4 to 5.
Outline

- Class logistics
- Introductory lecture on Intelligent Energy Systems
 - Definition
 - The Grid
 - Why its changing
Intelligent Energy Systems

- Look at intelligent energy systems from a systems point of view
- Nearer term evolution of the grid leading to the Smart Grid
- Focus monitoring
Why Intelligent Energy System Now?

- Incorporating renewables – supply(t)
- Replacing old equipment, $1.5T
 - Electrical efficiency
 - Reliability
- Reducing costs – Energy Summit Comment…
 - TCO
 - CAPX
- Deregulating – markets for power
 - Consumer participation
 - De-commoditization
- New business models
 - Consumer behavior based
 - POS advertising

$850B - grid
$650B - users

Home EMS

Building EMS
Intelligent Energy Systems

- What technology trends?
- Convergence
 - Internet of things (embedded internet)
 - Virtualization
 - Computation
 - Networking
 - Storage
- Economics of high performance computing (Moore’s law)
Monitoring

• Monitoring vs. control
• Why monitoring?
 – ROA
 – Frequency and severity
• Types
 – Operational
 – Maintenance
• Industrial structure
 – Equipments, to
 – Services
Backup:

Intelligent Energy Systems

• Definition: Connected, context aware adaptive systems that provide energy services.

• Includes all aspects of energy usage
 – Generation to commercial and residential EMS to
 – Individual devices

• New services (analytics)
 – Operational efficiency
 – Asset monitoring
 – Consumer behavior

• New infrastructure
 – Communications and IT
 – Big Data analytics

• Comment: Large scale IP connected embedded systems w/ emphasis on
Outline

– Class logistics
– Introductory lecture on Intelligent Energy Systems
 • Definition
 • The Grid
 • Why its changing
The Traditional Grid

• Worlds Largest Machine!
 – 3300 utilities
 – 15,000 generators, 14,000 TX substations
 – 211,000 mi of HV lines (>230kV)
 – SCADA control
 – Mostly unidirectional

• Capacity constrained graph
Interconnect
Traditional Grid

Conventional Electric Grid

Conventional Internet

Generation
Transmission
Distribution
Load
Power and Data Flow

Generators

Transmission 275-400’s KV

Substations

Distribution 10-20KV

ISO

Fiber and uWave

Slow speed wired and wireless/ nothing

Manual

Industrial
Commercial
Business
Residential

4/3/12 EE392N Intelligent Energy Systems
Backup: Capital Plant Age

Plant Age in Years

Installed Net Capacity in MW

≥400 MW, < 15 years

< 400 MW, < 15 years

≥ 15 years

< 15 years

I

II

III

IV

≥ 400 MW, ≥ 15 years

< 400 MW, ≥ 15 years

4/3/12

EE392N Intelligent Energy Systems
Outline

– Class logistics
– Introductory lecture on Intelligent Energy Systems
 • Definition
 • The Grid
 • Why its changing
Nearer Term Initiatives

- Renewables
- Demand Response
- Grid optimization
- All drive need for connected embedded systems
Renewables: The System Problem

Net Load

Dispatch

Need for conventional plants to cycle and ramp

National Renewable Energy Laboratory

4/3/12 EE392N Intelligent Energy Systems
Demand Response

Campus and Buildings

Home

• AMI
• EMS
• Smart devices
Grid Optimization

• Adjusting
 – Supply(t)
 – Connectivity
 • Transmission routing
 • Distribution Automation
 – Aggregating DR users
• Commercial buildings
Outline

– Class logistics
– Introductory lecture on Intelligent Energy Systems
 • Definition
 • The Grid
 • Why its changing
 • The Smart Grid
Three Planes

- **Electrical power**
 - Supply(t)=Demand(t)
 - Real and reactive power

- **Management and Control (MC)**
 - Local protection systems
 - SCADA: Supervisory Control and Data Acquisition

- **Data systems**
 - Billing
Segment Characteristics

– Energy is an *entangled multi-time scale* application
 • milliseconds for protection and control
 • Subsec for human in the loop interaction
 • Sec for Renewables variability management
 • Minutes for DR and building management…

– *Hierarchy of loops*
 • One optimizes the next
 • Latency sensitive
 • Computationally intensive
 – Iterative algorithms
Outline

– Class logistics
– Introductory lecture on Intelligent Energy Systems
 • Definition
 • The Grid
 • Why its changing
– Sense, Communicate, Transform, Services
Sense -> *Communicate* -> Transform

-> Services

- Standards NIS & IEEE

\[\text{WiMAX} \]
\[\text{LTE} \]

\[\text{ZigBee} \]
\[\text{HomePlug} \]

4/3/12
EE392N Intelligent Energy Systems
Sense -> Communicate -> Transform -> Services

– Transform data into information
– Hierarchy of entangled applications and computation
 • Intelligence at all levels of system
 • Issues in
 – Reliability – How many 9’s?
 – Security – Residential gate ways…substation…plant
 – Storage – Brewers CAP and Hadoop?
 – Energy efficiency – Hugh issue: always on and unattended
 – System manageability
 – Interface with the cloud
 » Hybrid Cloud?
Sense -> Communicate -> Transform -> Services

- Streaming data for
 - Near real time control
 - Asset Monitoring (Longer time scale)
 - Not the same as “click” data

- Algorithms
 - Iterative and computationally intensive
 - De-centralized computation possible, But
 - Can be sensitive to data coherence and consistency
 - EVT – Extreme Value Theory issues (No Blackouts!)

- Big Data - Yes, But Hadoop maybe not.
Next Week

- Dimitry will talk on Monitoring Basics
Many Different Segments and Players

- Traditional Power, Transmission and Distribution
- Big Data/Analytics
- Consumer Preference / Behavior Data
- IT/Comm
- Monitor, Optimize, Control
- Devices
Backup: Traditional Grid

Three major interconnects