ENGR 40M Project 3b: Programming the LED cube

Prelab due 24 hours before your section, July 31-August 3
Lab due before your section, August 8-11

1 Introduction

Our goal in this week’s lab is to put in place the mechanics to drive your LED array. Next week, you’ll figure
out something cool to do with your array.

When writing software to display patterns, we’d like to think about it in its physical layout, because it’s a
lot easier to conceptualize. But electrically, your cube is really a 2-D array and time-multiplexing runs in
2-D. Therefore, you’ll want to write software to abstract such hardware details away from the rest of your
software. This requires you to write a mapping between the two representations.

By completing this lab you will:

e Implement a time-division multiplexed driver, which is used in many electronic displays.
e Build a reasonably complex circuit on your breadboard, and learn how to debug it.
e Organize software to abstract hardware details from the rest of the code.

e Gain skills debugging a hardware/software system (because you will make mistakes along the way!)

2 Prelab

2.1 Owur LED multiplexing strategy

An LED is on when, and only when, its anode (+ side) is high and its cathode (— side) is low. Any other
combination (high/high, low/low, low/high) will keep the LED off. Therefore, we can turn on any single
LED by settings its anode (4) wire high and its cathode (—) wire low, and setting all other anodes low and
all other cathodes high.

low
— —_— —
—_— — —
wn
[}
R=]
=
~—~ high
+ =
w —_— —_—
FO — —
)
g
3 3
low
—_— —_— —_—
— — —
3 3
< =
)) 2
o of g
= = °

cathode (—) wires

ENGR 40M Project 3b: Programming the LED cube Summer 2017

While the figures show a 3 x 3 array, but the following questions refer to the 8 x 8 array that you will
actually build.

A one simple way to time-multiplex the LEDs would be just to turn them on one at a time. If cycle through
all 64 LEDs fast enough, your eyes will “fuse” them together and it will look like the LEDs that are on are
on constantly—just dimmer, since they’re not always on. To understand this, if an LED is turned on and
off very rapidly such that on average it is on %th of the time, we say that its relative brightness is %

P1: Consider a single LED that is turned on. Under the above regime, where we cycle through LEDs
one by one, what is the relative brightness of this LED?

We can improve this by turning on more than one LED at a time. More precisely: We can cycle through
anode (+) wires, setting them to high one at a time, but now set all of the cathode (—) wires corresponding
to LEDs we want to be on in that row to be low. Because every other row is forced to be off (by a low
anode wire), and each LED in a single row is on a different cathode wire, this still allows us to maintain
independent control of the LEDs.

low
—_— p— —_—
—_— —_— —_—
wn
[}
R=]
3
-~ high
+ =
Q —
@ —
<)
<
o]
b
low
—_— —_— —
— — —
3
E =) E
< = <

cathode (—) wires

P2: What is the relative brightness of a single LED under this scheme?

We might be a little more ambitious still, and ask: if we can have multiple cathode (—) wires low at the
same time, can we also have multiple anode (+) wires high? Sadly, things fall apart. Suppose we wanted
to light up the top-left and bottom-right LEDs in the diagram below. We can’t do this without turning the
two other LEDs on the same wires:

ENGR 40M Project 3b: Programming the LED cube Summer 2017

high

— —
8
R=
2
T low
@ —_— —_— R
FO — — —
o
=)
[
high
—_— —
— —
=
2 B g
= = =

cathode (—) wires
To keep this from happening, we need to make sure we’re only driving one anode (4) wire at a time.

2.2 LED driver circuitry

Driving a whole row at once requires that we supply much more current to the 4+ (anode) wires: depending
on the pattern being displayed, we may need to supply up to eight LEDs. During lab 2b (smart useless box),
we found that the Arduino can only supply a limited amount of current: about 40 mA per output pin. In
order to supply more, we use the same type of solution we used in the useless box: a transistor.

For this project, we've given you a handful of BS250 PMOS transistors in a TO-92 package (cylindrical with
a flat side). Please note that the pins on this PMOS are different from those from lab 2b.

0)
1‘31-'7
Q[e

SO%G

To help you figure out how to drive your LED cube we have created an EveryCircuit template for you to
use. The template is located at http://everycircuit.com/circuit/6685272118919168, and you
should be able to find it by searching for EAOM Cube Driver. The template is shown below.

http://everycircuit.com/circuit/6685272118919168

ENGR 40M Project 3b: Programming the LED cube Summer 2017

400 ym
00 nm

Arduino Outputs
e
I LED Cube

400 ym
00 nm

£

j4asas seazas

400 pm
00 nm

4
e

Aduino Outputs % % %
0— 00—
The circles labeled “Arduino outputs” model digital outputs. If you click or tap them they change state

(LOW to HIGH or vice versa) so you can use them to simulate your Arduino outputs. When testing this
array, make sure that only one pMOS transistor is turned on at a time.

P3: Complete the LED driver in EveryCircuit, and adjust the resistor values to get the right currents
(20mA) in the LED array. Please submit a screenshot of the completed circuit.

y
This button might be useful:

2.3 Arranging it on the breadboard

When you get to lab you will need to build eight transistor drivers, and add a resistor for each of the cathode
(—) wires. Since this is a lot of stuff to fit, you should do a little planning before you get into the lab about
how you will layout these components on your large breadboard. Remember to use the power and ground
rails of your breadboard. You will need to have some long wires in this design (since you are using so many
Arduino pins) but you should try to minimize the number of long wires. You should try to create one layout
for the transistor driver that you can replicate, which will make it easier to build.

Note: Do not use I/O pins 0 or 1, because these pins are used by the Arduino for serial communication.

P4: Sketch how you plan to arrange your driver circuit on your breadboard, using either the
breadboard template below or an online program such as Fritzing (http://fritzing.org/
download/). This sketch doesn’t need to include every component (you can indicate you repli-
cate a circuit 7 more times), but should figure out where each transistor and resistor will go.
Provide enough detail so your TA can catch any strategies that might lead to problems in the
lab.

http://fritzing.org/download/
http://fritzing.org/download/

ENGR 40M Project 3b: Programming the LED cube Summer 2017

"W R e R E R R R R R RS R E R YRS
@ ® 8 ® & 8 8 8 8§ & B 8 8 8 8 8 & 8 8 8 8 8 B 8 8 8 8 8 6 8 S8 88 S 8B 8 8 88 88 s
LRI A O O I O O I O I O O O O O O I O IR R R R I R B R O O I
L B T B I O T I I I O T I T I R R T I T I B R T I
LI I I B I I I I TR I T IR I I I I I TR I I I R TR I T O I B R R O I I I
"W E e e R E R R R RS F RS R E R R TR SRR R R ST e
L I B B A L B O D D L O L B B
@ @ 8 & 8 & B 8 B 5 B B B B B B B BB F SRR RS RSB e e
L I B O I I O I A A I O I O O I B B R O I B T I I I I I T T I R R T I B
L B B B B B B O B B O B BN B B B O B B B B B B BN B BN BN B R B B B N B B B BN B R BN B B R B B BN BB A
. - . . . - . e .- . . w - - - - - - . . -
L] LI L . L] .. . LI LI L LI L LI L B

3 Building the driver circuitry

1. Double-check your circuit with your TA before you start building.

2. Solder each of your eight anode (+) and eight cathode (—) wires to your cube (to lead to your bread-
board). It’s convenient to use CAT5 (Ethernet) cable for this, because it contains eight uniquely-colored
wires inside.

3. Build the circuit you designed on your breadboard. Use the 822 resistors from your kit. Use your
large breadboard for this project. Talk with your TA to get any feedback on your approach to creating
this circuit, and then start building. We suggest that you build a couple of transistor drivers and check
them out first (either with the cube or a single LED) to make sure you are connecting the transistors
correctly before doing all right of them.

That’s all the hardware for this project! Now it’s time to tackle the programming.

4 Software

4.1 First steps: Checking each LED individually

The first thing to do is to turn on each LED individually, to make sure all your circuitry is working.

1. Set up two arrays with the “names” of the anode (4, “row”) and cathode (—, “column”) pins. Having
these in an array means that the rest of the code need not care which pins get used; it can just index
into the array. This makes your code much easier to read, and to fix if you need to reorder your wires.

You can use any I/O pins except (digital) pins 0/1, which are used by the Arduino for serial com-
munication. A0-A5 of the analog pins can also act as digital I/O pins, so there are 18 pins at your
disposal. But, note: for next week’s project it would be good to leave a couple of analog (A0-A5)
pins free.

// Your pins will probably be different.

// Remember that analog pins (A0, Al, ...) can also act as digital
const byte ANODE_PINS[8] = {2, 3, 4, TODO};

const byte CATHODE_PINS[8] = {13, A0, TODO};

ENGR 40M Project 3b: Programming the LED cube Summer 2017

2. Complete the code below to create a nested loop that flashes all the LEDs:!
// TODO: Turn off everything

for (byte aNum = 0; aNum < 8; aNum++) {
// TODO: Turn "on" the anode (+) wire (high or low?)
// You can get the pin name with ANODE_PINS[pNum], and pass
// that to digitalWrite.

for (byte cNum = 0; cNum < 8; cNum++) {
// TODO: Turn "on" the cathode (-) wire (high or low?)
// Again, you can get the pin with CATHODE_PINS [nNum]
// TODO: Wait a little while
// TODO: Turn " off" the cathode (-) wire

}

// TODO: Turn "off" the anode (+) wire

}

3. Run the code and make sure that all of the LEDs do in fact turn on. It will be helpful for the next
part if you set up ANODE_PINS[] and CATHODE_PINS[] so that the lights go in some logical order.
If you can’t wait for all 64 LEDs, make the delay very short so that all the lights appear to be on at
once, and make sure they are all lit up. If only one or two LEDs don’t light up, check to make sure
you did not put them in backward.

I L1: Attach your completed code to cycle through each LED one by one.

4.2 Decomposing a complex task into simpler ones

We can now turn on each LED individually, but we’d really like to display whatever pattern we like on them.
Moreover, we’d like to specify these patterns using a natural representation of what we want to see—that
is, their physical layout—rather than the obscure anode/cathode pairs.

What might this “natural representation” look like? The most obvious idea is a 4 x 4 X 4 multidimensional
array, representing the cube. Each element can be either 1 (if the LED at that position is on) or 0 (off).

byte ledPattern[4][4][4];

Getting from ledPattern[4][4] [4] to time-multiplexing an anode/cathode grid is a little complex. To
make this easier, we decompose the task into several functions, each with a simpler job.

loop () the main Arduino loop
calls
display () does one pass through the LEDs, given a 3-D physical pattern

which calls

getLEDState () looks up the LED state associated with an anode/cathode pair

Our display () routine will do one time-division multiplexing cycle through the LEDs. Time-division
multiplexing runs most naturally in terms of the anode/cathode grid, so display () will “think” in those
terms. It delegates the task of interpreting the physical representation of the LEDs to getLEDState (),
which runs the mapping from anode—cathode coordinates (a, ¢) (aNum, cNum in code) to physical coordinates
(z,9,2).

1You can download the file everylight_cube.ino or everylight_plane.ino from the class webpage.

ENGR 40M Project 3b: Programming the LED cube Summer 2017

4.3 Time-division multiplexing in display ()

Recall that our time-division strategy goes like this:

e Go through the anodes (4, “rows”) one by one. For each anode:

1. Set each cathode (—) wire (“column”) to the appropriate level (HIGH or LOW)
2. Activate the anode (+) wire to turn the row on

3. Wait a (very) short time

4. Deactivate the anode (+) wire to turn the row off

We discussed this in lecture, and it’s very important that you understand this routine fully, so please ask in
office hours and discuss with your classmates if you’re not confident about how this works.

Below is the outline of the code; TODO lines are for you to fill in. You can download a starter file
display_cube.ino or display._plane.ino from the class website. The starter file also has hints in

it. ©®
void display (byte pattern[4][4][4])
{

for (byte aNum = 0; aNum < 8; aNum++) { // iterate through anode wires

// Set up all the cathode (-) wires first
for (byte cNum = 0; cNum < 8; cNum++) { // iterate through cathode wires
byte value = getLEDState (pattern, aNum, cNum); // look up the value
// TODO: Activate the cathode wire if value is > 0, otherwise deactivate it

// TODO: Activate the anode wire (without condition)
// TODO: Wait a short time
// TODO: Now done with this row, so deactivate the anode wire

L2: Download the starter file display_cube.ino or display_plane.ino from the class website,
and fill in the display () function.

4.4 Coordinate conversion in getLEDState ()

If you did an LED plane, this subsection doesn’t apply to you.

The display () function you just wrote delegated interpretation of pattern to another function, get LEDState () .
The role of this function is, given a 3-D array pattern[][][] and anode/cathode wire numbers (a,c)
(aNum, cNum in code), to find the corresponding physical location (z,y, z) and to return pattern[z] [y] [z].

Your (nontrivial, but fun) job, then, is to find the conversion mapping (a,c) to (z,y, z). As a reminder:
e a,ceach take values between 0 and 7 (inclusive), corresponding to the pins you listed in ANODE_PINS []
and CATHODE_PINS[], respectively.

e z,y, z each take values between 0 and 3 (inclusive), corresponding to locations in the pattern[] [] []
array, which in turn corresponds to your physical cube.

e You can (and should) reorder the entries in ANODE_PINS[] and CATHODE_PINS[] to make life easier
for yourself—that is, to put them in some sort of logical physical ordering.

e Your function can use logical (&&, ||, !) and bitwise (&, |) operators as well as mathematical ones
(x, /, %, +). You can also use if statements or the ternary operator (?:), but you shouldn’t need
more than one or two. (Certainly, please don’t write 64 if-else if statements!)

ENGR 40M Project 3b: Programming the LED cube Summer 2017

Below is an empty function definition:

inline byte getLEDState (byte pattern[4][4][4], byte aNum, byte cNum)

{
// TODO: fill this in to return the value in the pattern array corresponding
// to the anode (+) wire and cathode (-) wire number (aNum and cNum) provided.
return 0;

}

I L3: Fill in the getLEDState () function.

4.5 Putting it together

In the starter code, we’ve written a loop () function that reads values (z,y, z) from the Serial Monitor (or
(z,y) for the plane), and toggles (flips) the state of the light at that position. So, e.g., if you type in 0 0
0 then hit Enter, an LED in your (0,0,0) corner should turn on if it was previously off, and off if it was
previously on. You’'ll need to set the Serial Monitor to “Newline” and baud rate 115200. You shouldn’t need
to edit this 1oop () code, at least not this week.

Once you’ve written display () and getLEDState (), run the code and see if it works. If it doesn’t, don’t
panic—for most people this won’t work the first time. Start debugging:

e Try different combinations (x,y, z) and try to see patterns in what’s wrong.

e If exactly one LED is toggling but it’s the wrong one, check what your mapping function does for those
coordinates.

e You could slow down the display () function by increasing the delay () length in it, to help gain
visibility into what the cube is doing “in slow motion”.

L4: Please submit your completed display code, including the display () and getLEDState ()
functions.

5 Analysis

The display function that you created in the lab has only two states for each LED: on or off. It would be nice
if we could store brightness values in the LED pattern, and have the code create lights of different intensity.
Sixteen brightness levels would probably be good enough for most displays.

We could change the brightness by varying the current, but it’s difficult to change the current flowing through
the diodes. There’s only a small range of current for which the LEDs will turn on without blowing out. We’ll
have to vary something else to set the brightness.

A1l: Without changing any hardware, what property could you change to set the brightness of each
LED? (Think about what determines the relative LED brightness.)

ENGR 40M Project 3b: Programming the LED cube Summer 2017

A2: Write pseudocode for the display () function, showing how you would modify it for variable
brightness. You should start with the code you’ve already written. Assume that getLEDState ()
returns a number between 0 (off) and 15 (fully on) representing the brightness for the LED
specified. There are a number of easy of mistakes to make on this problem. If you want to be
sure your method works, you should try it on your cube!

6 Reflection

Individually, answer the questions below. Two to four sentences for each question is sufficient. Answers that
demonstrate little thought or effort will not receive credit!

R1: What was the most valuable thing you learned, and why?

ENGR 40M Project 3b: Programming the LED cube Summer 2017

R2: What skills or concepts are you still struggling with? What will you do to learn or practice these
concepts?

R3: If this lab took longer than the regular 3-hour allotment: what part of the lab took you the most
time? What could you do in the future to improve this?

7 Build Quality rubric

Your build quality grade in this project is based on both the quality of your breadboarding and the clarity
of your code.

Plus

Connections to the cube have neat, compact solder joints, with sensibly-chosen connection points

Breadboard layout is clean and organized, taking largely no effort to follow

e Wires are color coded and easy to trace

Wire lengths are about right

Software is well-commented and easy to follow, with good use of constants and data types

e Mapping function is straightforward
Check

e Breadboard layout is organized, but could be improved by rearranging some components
e Wires can be traced without too much difficulty, but lacked some planning

e Code is properly indented and variable names make sense, but would benefit from more comments

Minus

Clear lack of breadboard and/or software planning
Some LEDs do not work

Breadboard layout doesn’t follow a consistent pattern

Wires can be difficult to trace

Breadboard circuitry prone to short-circuiting

Software isn’t commented, or is difficult to follow

Mapping function is unnecessarily complex or incorrectly maps some LEDs

10

	Introduction
	Prelab
	Our LED multiplexing strategy
	LED driver circuitry
	Arranging it on the breadboard

	Building the driver circuitry
	Software
	First steps: Checking each LED individually
	Decomposing a complex task into simpler ones
	Time-division multiplexing in display()
	Coordinate conversion in getLEDState()
	Putting it together

	Analysis
	Reflection
	Build Quality rubric

