
ENGR40M Project 3c: Coding the raindrop pattern
For due dates, see the overview handout

The raindrop pattern works like this: Once per time period (say, 150 ms),

(a) “move” the pattern one plane down: the top plane to the second plane, the second to the third, and
the third to the bottom; and

(b) choose some number of LEDs in the top plane at random to light up.

If you configure the time step and the number of new LEDs appropriately, this pattern looks like rain falling.

To make this pattern, we’ll use the abstractions you wrote in lab 3b, so that we can focus on generating the
pattern[4][4][4] array. Just as we did in lab 3b, we’ll decompose this into smaller functions: a function
movePatternDown() for step (a) and a function chooseRandomInTopPlane() for step (b).

We’ll start by having just a single randomly-selected LED on the top plane light up, but this should be easy
enough to extend to several LEDs.

This handout assumes you’re working with a cube. If you have a plane, we leave it to you to modify the
code to start on the top row and drip down, rather than the top plane.

1 Moving the pattern down

First, we’ll write a function movePatternDown(pattern) that moves the pattern in the pattern array
down by one level. That is, when movePatternDown() returns,

� the bottom plane should be the old second-from-bottom plane,

� the second-from-bottom plane should be the old second-from-top plane,

� the second-from-top plane should be the old top plane, and

� the top plane should be blank (all LEDs off).

There are lots of ways to do this, but you’ll probably want a triply-nested for loop of some description (see
slide 9 of lab lecture 3b for a reminder). Don’t forget that you need to explicitly set every element in the
top plane to turn the LED off.

L1: Write movePatternDown() to implement the functionality described above.

void movePatternDown(byte pattern[4][4][4]) {
// TODO: Write code to move the pattern down by one plane, and turn the
// top plane off.

// Here's a triply-nested for loop to get you started, but you can modify
// or replace this if you wish:
for (byte z = 0; z < 4; z++) {

for (byte y = 0; y < 4; y++) {
for (byte x = 0; x < 4; x++) {

}
}

}
}

http://web.stanford.edu/class/engr40m/slides/lablecture3b.pdf


ENGR 40M Project 3c: Coding the raindrop pattern Summer 2017

2 Choosing a random LED

The Arduino function random(min, max) generates a random number between min (inclusive) and max
(exclusive). For example, random(0, 3) randomly chooses between 0, 1 and 2 (but not 3). We want to
write something that will pick a random (x, y) coordinate, since we know that we want the z-coordinate to
be 3 (or whatever your top plane is). We’ll need to pick two random numbers in the range of the cube size.

L2: Fill in the function below to choose two random numbers and set them as your x and y coordinate
(complete this even if you have a plane, and then modify your actual code on your laptop). After
you’ve chosen the numbers, set the LED at that position in the top plane to turn on.

void chooseRandomInTopPlane(byte pattern[4][4][4]) {
// Assumes the top plane has already been cleared (all lights set off)
// TODO: Choose an x-coordinate and y-coordinate each at random
// [write your code here]

// TODO: Set the value for this random (x,y) in the top plane (z=3)
// of your pattern so that the LED will be on.
// [write your code here]

}

3 Moving the light down the cube

We wish to call the functions movePatternDown() and chooseRandomInTopPlane() regularly, once
per time step (say, 150 ms). You’ve already used time-based programming in the useless box, but we’ll review
it here as well.

Arduino has two built-in functions to keep track of time: delay() and millis(). When delay() is
executed, the program stops until the delay time has passed. Since the Arduino is essentially not running
during this time, it won’t be able to react to any user input during the delay(). The millis() function,
on the other hand, just reads an internal clock (that runs independently of the software) and returns its
value.

One strategy for updating every TIME DELAY milliseconds goes like this: We maintain a long variable
nextUpdateTime that stores the millis() clock value at which the next update should take place. If the
current millis() exceeds nextUpdateTime, then we update the display, and bump nextUpdateTime
to the next time at which an update should take place.

All of this code will go into your loop() method. This method runs continuously, so every time we go
through, we can read millis() and see if enough time has elapsed.

There’s one catch here: if we define a nextUpdateTime within loop() as a normal long1, it will be a
local variable, which means its value won’t be stored when loop() runs again. To solve this problem, we
define it as a static long. Static variables are initialized once, when the function first runs, and their
value is stored even when the function is run again.

You can also use a global variable here, which is defined at the top of the program outside of any functions
and can be accessed anywhere within your code. However, for good coding style, we generally try to avoid
global variables so we can’t accidentally change their value where we don’t mean to. In general, variables
should only be accessible by the functions that directly need them.

1We use long instead of int because millis() returns a larger value than int can store.

2



ENGR 40M Project 3c: Coding the raindrop pattern Summer 2017

L3: Fill in the code below to check if enough time has elapsed, and if it is, print “update” to the serial
port, call the two functions you wrote above, then update nextUpdateTime. Test this code to
see if it works before continuing. It should look like a raindrop pattern!

const int TIME_DELAY = 150;

void loop() {
static byte ledOn[4][4][4];
static long nextUpdateTime = millis();

// TODO: Write code to check if the current millis() clock is at least
// nextUpdateTime. If it is, print "update" to the serial port, move the
// pattern down, choose a (new) top plane, and update the nextUpdateTime
// variable to the next time at which an update should occur.
// [write your code here]

display(ledOn);
}

That’s your basic raindrop pattern! Congraulations! Now, let’s add some interactivity.

4 Adding user input

The raindrop pattern looks great, but what if you want to pause it to admire its stationary beauty? Here is
some basic interactivity we might add, using the serial port:

� When the user types 'g', the raindrop pattern starts.

� When the user types 'p', the raindrop pattern freezes (pauses).

� When the user types 's', the raindrop pattern stops, that is, turns all LEDs off.

We’ve already done this: you programmed a finite state machine that reacts to user input in the useless box.
In this lab, we’ll start with three states: “go”, “pause” and “stop”, corresponding to the states listed above.

L4: Draw a state machine for the three states of the cube. Your state machine should include the
states and the conditions for transitioning between states, namely, the characters the user would
type for the state to make the transition.

3



ENGR 40M Project 3c: Coding the raindrop pattern Summer 2017

We’re going to use a switch statement to figure out what state we’re in and take the appropriate action. If
you don’t remember exactly how to code a switch statement, don’t worry; we’ve written the basic outline,
so you’ll just need to fill it in.

L5: Finish the switch statement below, and copy over the code you wrote in L3 above to an appro-
priate location in the code below, to execute your state machine.

void loop() {
static byte pattern[4][4][4];
static long updateTime = millis();
static byte state;

byte user_input = 0;
if (Serial.available() > 0)

user_input = Serial.read();

switch(state) {
case 'g':

// TODO: Copy over your code to animate the raindrop pattern

break;
case 'p':

// TODO: Fill in the 'pause' state to display the paused pattern

break;
case 's':

// TODO: Fill in the 'stop' state to turn off everything

break;
}

}

Upload this program to your cube, and open the Serial Monitor to test it out. Note: You will need to
change to “No Line Ending” in the bottom right corner of the Serial monitor for this to work
correctly. Show your TA when you have it working.

5 Next steps

Now that you know how to create a simple pattern on the cube, try coding a few patterns of your own—either
the ones you brainstormed in the prelab or a new one you’ve come up with since then. You can try one of
the ideas below or come up with your own:

� Add variable brightness to the raindrop pattern so the LEDs fade in and out instead of just being on
and off

� Set the cube to have multiple raindrops falling at a time

� Pulse the brightness of the cube from the center outwards (like a heartbeat)

� Code a snake-like pattern that will turn in a random direction whenever it hits the edge of the cube

L6: Add at least one additional pattern to work on your cube. This should meet the complexity
requirements outlined in the first section of this lab. You can use any type of user input you
want—please consult the overview handout for more on different user input methods.

4



ENGR 40M Project 3c: Coding the raindrop pattern Summer 2017

6 Reflection

Individually, answer the questions below. Two to four sentences for each question is sufficient. Answers that
demonstrate little thought or effort will not receive credit!

R1: What was the most valuable thing you learned, and why?

R2: What skills or concepts are you still struggling with? What will you do to learn or practice these
concepts?

R3: If this lab took longer than the regular 3-hour allotment: what part of the lab took you the most
time? What could you do in the future to improve this?

5


	Moving the pattern down
	Choosing a random LED
	Moving the light down the cube
	Adding user input
	Next steps
	Reflection

