Chapter 3

Solving for Voltage and
Current

Nodal Analysis

If you know Ohm’s Law, you can solve for all the voltages and currents in
simple resistor circuits, like the one shown below. In this chapter, we’ll cover
the basic strategy of solving circuits, which is called nodal analysis. It consists
of writing KCL (the sum of the current flowing into a node is zero) for each node
in the circuit, using the node voltages and the device current equations to find
the currents through each device. This chapter we will use resistors, current
sources and voltage sources in our examples which were given in Chapter 2. By
solving this system of equations, we can find the voltage at each node and the
current between each pair of nodes. This basic method works for all circuits. It
works by converting the circuit into a linear algebra problem (if there are not
diodes involved. With diodes the problem is no longer a linear problem) which
can be solved by many programs (for example Matlab). An example of a circuit
you will be able to solve using this method is shown in Figure 3.1.
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Figure 3.1: Example of a circuit we can solve using nodal analysis

We could stop there, but this method doesn’t provide much insight about
the effect each device has on the behavior of the circuit, which is important in
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48 CHAPTER 3. SOLVING FOR VOLTAGE AND CURRENT

the making (design) process. When you are designing a circuit you are really
choosing the elements to generate the right behavior. To address this problem,
after we describe nodal analysis we will provide a number of techniques that
allow you to simplify the network you need to solve. Using these techniques
generally simplifies the network to the point that you can solve them in your
head, which gives you a much better understanding of what the component
values need to be to get the effect you want. These simplification techniques
include series and parallel reductions, voltage and current dividers, equivalent
circuits, and superposition. Using these techniques you should be able to analyze
a circuit without needing a computer. They are also very helpful when using
non-linear devices like diodes, or transistors (we will introduce them in the next
chapter).

3.1 What are nodes and node voltages

As we described in Section 1.3.1, in a circuit, a node is a place where two or
more devices (resistors, diodes, batteries, etc) meet. Remember in our circuit
model abstraction the lines that connect devices have no resistance (they are
perfect conductors) so the voltage drop along these lines must be 0V. Thus we
collapse the entire wire (which can have many segments) into a single node,
since the voltage at any point on that line will be the same as the voltage at
any other point on that line.

Let’s try to identify the nodes in the circuit shown in Figure 3.1. A good
way to find nodes is to pick a point on a wire, and follow the wire in all directions
possible until you run into another component. One node might only connect
two components, or it might connect many. Figure 3.2 shows each of the nodes.
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Figure 3.2: Identifying the nodes of the circuit
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As we described in Chapter 1, since voltage is a measure of potential differ-
ence rather than an absolute number, a single node can’t really have a voltage.
The voltage of a node has to be measured relative to another node: only volt-
age differences are well defined. To get around this problem, in each circuit, we
choose a node, referred to as ground, or gnd, to act as the reference node that
we will use to measure the voltage of the other nodes. When we talk about a
node voltage, we are really measuring the voltage difference between that node
and the “gnd” node. Using this definition it is clear that the voltage of the
“gnd” node must be 0V: the voltage difference between a node and itself is al-
ways zero. In our circuit diagram we use the symbol shown below to indicate
the ground node.

We can choose any node we want to serve as ground. Moving ground to
a different node will change the voltage you report for that node (since it is
now measured relative to a different node), but it will not change the voltage
difference between the nodes. In the figure below, notice how we chose a different
ground node for each circuit, so the voltage at each node looks different in each
figure. However, for each circuit, the voltage difference between nodes A and B
is 2 V, between B and C is 3V, and between A and C is 5V. Since the current
through a device depends on the voltage difference between its two terminals,
the choice of reference voltage doesn’t change any of the current flowing in the
circuit. All of this just shows that voltage is relative: changing which node we
call ground never changes the voltages across the devices or the current flowing
through them.

Ground is a reference

A B A B A
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5V 3k 5v 3k 5V 3k
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A=5V A=0V A=2V
B=3V B=-2v B=0V
c=0V C=-5v C=-3v

Figure 3.3: Grounding a circuit at different nodes

By convention, many circuit designers choose the lowest node in the schematic
to serve as ground. Also by convention people tend to draw circuits so nodes
with lower voltages on the bottom of their pictures, so the ground node is often
the lowest voltage node. Another strategy is to make the ground node the node
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with the most connections to other devices, since, as we will see next, this will
simplify nodal analysis. For example, in our circuit from the first figure, we

might choose node D, as shown in Figure 3.4 since that node connects five
components.
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Figure 3.4: Choosing a ground for our first circuit example
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However, if we wanted to choose another node, like B, we could do that, too.
It often helps to draw ground on the lowest node so if we make B ground we

can even re-draw the circuit by rotating it so our ground node is at the bottom,
as illustrated in Figure 3.5
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Figure 3.5: Choosing a ground for our first circuit example

In general, you can choose any node you want to be your ground node. Just
make sure you mark your ground node clearly whenever you're solving a circuit.

3.2 Nodal Analysis

Let’s take the circuit we have been looking at, set node D to be ground and
try to find the voltage at node B. At first this seems complex, since at first we
don’t know what any of the voltages are (except node D, which we know will be
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at 0V), and they all seem to depend on each other. Fortunately there is a very
simple procedure you can use to solve any circuit you run across. All you do is
write KCL equations for each of the nodes in the circuit skipping the ground
node. This will give you one equation for each node, and the only variables
(things you don’t know the value of) these equation depend on are the node
voltages. So if we have ‘n’ nodes with unknown voltages, we will end up with
‘n’ equations in ‘n’ variables, which means if the device equations are linear,
and resistors, voltage and current sources are linear, linear algebra we can solve
these equations to find the node voltages. This simple procedure is called nodal
analysis.

Rather than starting with this complex circuit, let’s start with a simpler
example. In Figure 3.6, we want to find the voltages at nodes A and B and
the currents i; and i;. We start writing KCL equations for node A and run
into our first problem: a voltage source can supply any current. This makes the
current equation for this node less than helpful. Fortunately since the device is
a voltage source, we know the voltage across it is fixed (5V in this example).
Thus we can find the voltage at node A without writing the current equation
there. V4 = 5V, sine the other side is connected to gnd. Now we can write the
KCL equation for node B:

Figure 3.6: A simple circuit

11 —i2 =0

(i; flows into B, and iz flows out of B). The currents i; and i can be found
from Ohm’s Law:

_ 5V — Vg

ih=—

T2k

3k

In this step, is it very important that you calculate the current for the

reference directions you choose in the problem. To find the current that flows
in a particular direction, move in that direction through the device. The node

12
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you exit from moving in that direction should always be subtracted from the
node you start at; e.g node B should be subtracted from node A for ij.
This equation lets you solve for Vp:

oV — Vg VB

2k 3kQ

Multiply both sides by 6k€:
15V =3V =2V =0

15V = 5VR
Vg =3V

Let’s try a more complicated example. Inthe circuit shown in Figure 3.7, we
want to solve for the voltages at nodes A - D, and the currents i; —i5. It sounds
complicated, but we can use KCL and KVL just like we did in the example
above.

Figure 3.7: A more complex circuit

Let’s start with node A. Again, only a voltage source is connected between
ground and node A so V4 = 5V. We can do the same thing with node C - V&
= 2V.

In this circuit we were lucky that the voltage sources connected to gnd, so
we know the voltage at the both sides of the voltage source. But you can have
a voltage source that is not connected to ground. Suppose in the circuit above,
node D was chosen as the reference node, and the node labeled gnd is now
node E. While we have a voltage source, now we don’t know what the voltage
is at either node E, Vg, or node C, V. In this case you form what’s called a
supernode. This doesn’t really mean anything other than that you can form
a simple substitution equation. We don’t know V¢ because we don’t know Vg,
but we do know that Vo = Vg + 2, because the voltage source sets the voltage
rise between them. So we don’t really have two unknown node voltages, we only
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have one unknown. So we can still remove the variable V& and replace it with
Ve + 2. And while we don’t know the current that flows through the voltage
source we know the that that the current that flows into it at node C must flow
out of it at node E. Using these constraints we couple the two node equations
into a single supernode equation for nodes C and E.

Going back to our actual circuit, while the circuit has 4 nodes other than
gnd, it only has two nodes with unknown voltages. So we need to write two KCL
equations. Starting with node B, we know that the current through the 1k
resistor between A and B is the same as the current through the 4k resistor
between B and C, or iy, which gives:

Va—-Vg Vg—-Vo

1 aka Y

5V—VB_VB—2V_O
1kO 4k

Let’s now move to node D.

19 =13 + 14 + 15

Ve-Vo _ Vb Vo Vo-Va

o0 ko T aka T 1R

2V—VD72VD +VD—5V
26 T4kQ 1kQ

Using both equations we can solve for the two node voltages.! Multiplying
both equations by 4k gives

20V —-4-Vg—-Vp+2V =0
5-Vp =22V
Vp =44V

4V —2Vp =2Vp +4Vp — 20V
8Vp =24V
Vp =3V
Now that we have the voltage at B and D, we can find all the currents:

BV —Vg 5V —44V
B 1%Q 1%Q 0-6m

1You might notice that in this problem you can use the first equation to solve for Vg, and
the second equation to solve for Vp which is pretty unusual for these type of problems. More
generally both equations will have both node voltages.
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. Vo-Vp 2V -3V

2= "9 T o 0omA
i3 = 42—[;2 = 0.75mA
iy = 4‘2—1;2 =0.75mA
i5 = % = —2mA

We can check our original KCL equation to make sure that it holds:
io = i3+ 14 + 15
—0.5mA = 0.75mA 4+ 0.75mA — 2mA

—0.5mA = —0.5mA

Notice that we wound up with negative currents for i and i5. This is com-
pletely fine! It just means that the direction we assumed the current would flow
is backwards from where it’s actually flowing. In circuits, everything is relative.
There is no such thing as an absolute voltage or an absolute current direction.
This is why it’s so important to carefully mark the direction of your current,
the positive and negative terminals of your voltage, and the location of your
ground.

In nodal analysis the number of equations is proportional to the number
nodes, and the complexity of the equations depends on the number of elements.
As we will see in this next section we can use local rules to reduce both of these
variables which can make the circuit much simpler to analyze. We will start
with simple rules for combining two devices into a single device.

Problem 3.1
What are the currents I1, 12 and I3 (the current through resistors R1, R2,
and R3 respectively)?

1 13
A - ——
R1 R3
A4 M
1k 2k2
V1 V2

® 2a$ 40 ©

12V 24V
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3.3 Series and Parallel Resistors

While nodal analysis always works, there are way you can simplify the math
that you need to do. These steps are in some sense optional, since they just
reduce the number of devices and/or nodes you need to analyze the circuit, but
are often very helpful to understand what is happening in the circuit.

3.3.1 Series Connections

As we mentioned in Section 1.7, when analyzing circuits, there are some con-
nections between devices that have special constraints that we can make use
of. These occur when resistors are connected in series or in parallel. A series
connection refers to one in which a terminal of the first device is connected
only to a terminal of the second device. Because these two devices are the only
devices connected at this node, the current through each must be the same.
This follows from KCL: the sum of currents at the node between the two device
must be equal to zero, so the same current must flow out of one device and into
the other. Figure 3.8 shows a situation where two devices are in series, and a
situation where none of the three devices are in series.

Figure 3.8: Left: Two devices in series; Right: No devices in series

When two resistors are connected in series, the voltage across the series
combination is just going to be the sum of the voltage across each resistor. But
this voltage is i- Ry and i- Ry, and the current is the same in the two resistors. So
the sum of the voltage across these two devices will be the same as the voltage
across a single resistor of (R; + Rg). This is shown in Figure 3.9
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Figure 3.9: Combining resistors in series

Vi=ix Ry
Vo=1ix Ry
Viotat = V1 + Va = iRy + iRe = i(R1 + R2) = iRiotar
Riotar = R1 + R2

The big advantage of doing this simplification is that you remove a node
from the circuit, which removes one of the variable you need to solve for and
one equation from your nodal analysis. While makes the linear algebra easier,
its real advantage is when it makes the algebra so simple that you can solve it
without really doing any linear algebra (which is true for most of the problems
you need to solve).

If you have many resistors in series, you can repeatedly apply this method
to combine a resistor to the previous equivalent resistors, so this equation gen-
eralizes to:

N
Rtotal = § Rn
n=1

Notice from this equation, that the total resistance along a path always
increases as you add another resistor in series with it. Checking that this is true
is always a good way to check your work.

3.3.2 Parallel Connections

A parallel connection refers to one in which the two terminals of the first com-
ponent are connected to different terminals of the second component. Other
components can also be connected to each terminal. Components connected in
parallel have the same voltage drop across them. This follows from KVL: if we
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follow the loop around the two components connected in parallel, the total volt-
age must sum to zero, which means that each component must have the same
voltage drop across it. The currents are not necessarily equal. Some examples
are shown in Figure 3.10

[ > 1

Figure 3.10: Left: A and B are in parallel; Center: A, B and C are in parallel;
Right: A and B are not in parallel

When two resistors are connected in parallel, the equivalent resistance is
equal to ﬁ This is illustrated in Figure 3.11. We can find this by solving

1 Rz
Ohm’s Law across the two parallel components:

¢ itotal
iy Vi

Ry v o> Vi - Reotal

Figure 3.11: Combining resistors in series

Viotar = 11 R1 = 12 Ry
il _ ‘/total : i2 _ V;Eotal
Ry Ry
1 1

ltotal = 11 + 12 = Vtomz(R— + R_)
1 2

‘/total 1 1 —1 Rl ) R2

Roa:. = (= + = = -
total = otal R R R+ Ry
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This equation can be generalized for multiple resistors in parallel:

Ny B
Rtotal:(z R_)

n=1""

From this equation, the equivalent resistance of resistors in parallel will be
smaller than any of the individual resistors. With parallel connections, the cur-
rent has more possible paths to take, which means that the ability of the circuit
to conduct (conductance) increases, and resistance, which is the reciprocal of
conductance, decreases.

3.3.3 Combining Series and Parallel Resistors

Let’s try out what we know about series and parallel resistors to solve for the
equivalent resistance between A and B in the circuit shown in Figure 3.12.

Figure 3.12: Find the equivalent resistance between points A and B

Let’s start by identifying what we know are resistors in series and parallel.
Ry and Rg are clearly in series, since one terminal of R; is connected directly
to a terminal of Ry, with nothing else in the middle. Similarly R4 and Ry are
in series. We know that we can combine two resistors in series into one resistor
by simply adding the resistances, resulting in the circuit in Figure 3.13.
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Figure 3.13: Find the equivalent resistance between points A and B - series
resistances combined

Now let’s try simplifying some parallel resistors. We can see that Rg and

R; are in parallel, since both of their terminals are connected to each other.
We can use our parallel resistance equation, Riptq; = %, to combine these

two resistors into a single 3k{2 resistor. Similarly, R3 is now in parallel with the
combined R; and Ry. When two resistors of the same value are parallel to each

other, the resulting equivalent resistance is just equal to half of the original

resistor value (you can see this by solving the original equation: g—; = %)

Therefore, we can combine the left two branches of the circuit into a single 3k2
resistor. The result is in Figure 3.14.

B

Figure 3.14: Find the equivalent resistance between points A and B - parallel
resistances combined

This resulting circuit is pretty simple. The two resistors on the right are
in series, so we can just add them to get a 6k resistor. Then we have a 3k}
in parallel with a 6k(2, so we can use our parallel resistance equation to get an
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overall resistance of 2kQ). We’ve now simplified the circuit into what’s shown in
Figure 3.15.

>

3k

B

Figure 3.15: Final combined resistance

Problem 3.2
Find the equivalent resistance of this entire circuit between the two indi-
cated nodes. (Find Req.)

R7
AN @)
1k
<SR REQ Few
2k >3 -
O

3.4 Voltage and Current Dividers

Sometimes, we have two resistors in series, but we need to find the voltage at
the node in the middle of the circuit, or we have two resistors in parallel but
we need to find the current through one of the resistors. In both these cases
we can do the series or parallel reduction, find the current through the series
devices or the voltage across the parallel devices, and then solve for the desired
voltage or current. But because these situations arise often, we have a shortcut
for analyzing these types of circuits. One of the reasons that they occur often
is that they have a useful function. These circuit produce an output voltage or
current that is a fraction of the input voltage or current. Thus these circuits
are called voltage and current dividers.

3.4.1 Voltage Dividers

In a simple voltage divider made of two resistors connected in series, we want to
solve for the voltage drop across each resistor. We will start by solving for the
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voltage drop across the lower resistor. If we assume that the lower resistor is
connected to ground, this is equivalent to the voltage at the intermediate node,
Vinid- Since there is only one unknown in this circuit, V;,;q we write KCL for
this node:

Vtop
R1

Viid
R2

Figure 3.16: A voltage divider

‘/top - Vinid o Vinid

Ry Ry Ry
L1 Vig

Vinia(5-) + o
SR
1
= RQ
Vmid = ‘/topL = ‘/top—
Ril RL2 R+ R>

Notice that the output voltage is a fraction of the input voltage, and that
fraction is the value of the bottom resistor, over the total resistance of the chain.
This makes sense, since the current is going to be set by the total resistance. If
most of the series resistance is from the bottom resistor, it will have most of the
voltage across it. But as this resistance gets smaller (compared to the total),
the voltage across the resistor gets smaller too.

If we want to solve for the voltage across R instead, we would need to find
Viop — Vinia- We can then rewrite the equations as follows:

Ry
Vinia = Viop5——%
¢ “PRi + Ry
R2 R2
Viop = Vinid = Viop — Viap = = Vigp(1 = 2
top d top tpRl+R2 tp( R1+R2)
Ri+ Ry — R
‘/top_Vmid:‘/top 1R14-2R2 2

R,

V;top - Vmid = V;topm
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Vtop
R1

Vinid
R2

Vbot

Figure 3.17: Another voltage divider

Question: Sometimes you will have a voltage divider situation by the bottom
voltage won’t be ground. Instead, let’s assume it is V. What do you do here?

While this situation seems more complicated than the grounded case, it is
no harder to solve. You just need to remember that all voltages are relative.
We know the voltage drop across Rs is going to be:

R
Vieo — Voot) - ————
( top b t) R+ Ry
And this is equal the voltage Vinia — Vhor- SO Vinig is just going to be:
Ry
Vmi = Vo Vo - Vo =
d ot + Viop bot) "+

Note that if Vi = 0, this equation simplifies to the same thing we had
earlier. Basically, this is telling us that we need to multiply the resistance ratio
by the voltage difference across the entire divider, then add the offset from the
bottom voltage. In this case, the voltage across the top resistor is equal to:

Ry
Ri+ Rs

Again, this is the same equation we had earlier, but looking at the voltage
difference between the resistors.

In general, the voltage across one of the components is equal to the resistance
of that component divided by the sum of the two resistances. If we have multiple
components connected in series between V,,, and V., this equation generalizes
as shown below:

V;op — Vinia = (V;fop - W}ot)

R,
VRI = (‘/top - Vbot)N— + ‘/bot
>

n=1-""n
If R; and Ry are multiple components connected in series or parallel, we can
find the equivalent resistance of these two sets of components and solve from
there.
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Problem 3.3
Find V. in the following two circuits.

3.4.2 Current Dividers

In a simple current divider made up of two resistors connected in parallel, we
want to solve for the current through each resistor. In a parallel circuit, the
voltage drop across each component is the same. We can use this to write
equations for the circuit as shown below:

¢ lin
iy Vi

Figure 3.18: Another voltage divider

Viotal = 11121 = 2Ry

) . Ry
12 = 11—
Ry
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) ) ) N
Ltotal =11 + 22 =11 + llR—
2

. . Ry R+ Ry
otal — 1 )= I —
itotal = 11 ( +R2) hn—g
Ry
Ri+ Ro

We can flip these equations to find the current through the opposing resistor,
ig = itomlﬁ. This essentially tells us that the fraction of the original current
through one resistor is equal to the other resistance, divided by the sum of
the two resistances. Notice that equation looks similar the the voltage divider
equation, for a current divider, the numerator is the opposite resistor, not the
resistor we are measuring the current through. This makes sense, since as the
resistance of the resistor increases, it is harder for the current to flow, so the
current should go down.

If we have multiple resistors in parallel, the fraction of the current through
one resistor is equal to the parallel combination of the other resistances, divided
by the sum:

11 = total

N 1 1 \—
(Zn:lR_n_R_z) !

()

iRI = itotal

Problem 3.4
Find the currents in each of the resistors in the following circuits.

e

Iy 2} (11 Y R
R1 R2 RI¢ Rig RS
1k 2% ® W3 w3 w
100mA 100mA
O ¢ O

3.5 Equivalent Circuits

Honestly, most of the circuits that you will need to deal with when you are
making stuff (and not doing homework problems) will be pretty simple, and



3.5. EQUIVALENT CIRCUITS 65

won’t be hard to analyze. Nodal analysis will always work, and you can make
this even easier by reducing the complexity by using series parallel reductions
and using current and voltage dividers. But occasionally you will find a circuit
that is hard to analyze, or have a design problem where you will need to find
a component that makes a voltage or current somewhere else in the circuit to
the right value. Here it would be great if you could simplify the rest of the
circuit to yield something simple like a voltage divider, when the relationship
between the device you can adjust and the value you are interested in is easy to
understand. This is especially true when there are some non-linear elements in
the circuit, where understanding the region of operation of the non-linear device
is important. Fortunately it is almost always possible to create these type of
simplifications.

The basic idea behind these simplification is a concept we have used before:
creating the iV curve for an electric device. In the previous chapter we created
these curves for primitive devices like voltage sources, resistors and diodes, but
we also showed how we could model more complicated device like a battery as
a combination of a resistor and a voltage source, or a solar cell as a diode in
parallel with a current source dependent on the light intensity. What we show
in this section is that any combination of linear resistors, voltage sources and
current sources can be modelled by a single resistor in series with a single voltage
source. This single resistor, single voltage source model is called the Thevenin
Equivalent circuit. The iV of any complex linear circuit can also be modeled by
a current source in parallel with a resistor, and this model is called the Norton
FEquivalent circuit. The reason this is possible is simple. If all our devices are
have a linear relationship between current and voltage (true for resistors, voltage
and current sources) then the resulting relationship between current and voltage
of any combinations of these devices will also be linear. This means if we take
any two nodes in a linear circuit and pretend that all the components form a
new device, see the figure below, this relationship between current and voltage
will be a straight line in the i-V plane. This curve can be defined by a line,
V =1i- R+ Vi, where R is a resistance and V;, is a voltage source. This line
can also be generated by a voltage source in series with a resistor.

3.5.1 Thevenin Equivalent

Thevenin’s theorem states that a linear two-terminal circuit can be replaced
by an equivalent circuit composed of a voltage source and series resistor, as
shown below:
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T A
J

,—!-b-
<
>

Further the theorem states that you can’t make any measurement using just
the nodes A and B that can tell the difference between the two circuits. this
give us a hint of how to find the value of the voltage source and resistance for
the equivalent circuit. One simple measurement we can make is to measure the
voltage between A and B with nothing connected between the two terminals. In
the Thevenin circuit, this voltage is obvious. Since there is no current running
between A and B, the voltage drop across the resistor must be zero (V =i R),
so the measured voltage is just V;,. Remember that since no current is flowing
between the terminals, this is the “open-circuit” voltage. Since the open circuit
voltage is equal to the value of the voltage source in the equivalent circuit, it
is often called the Thevenin voltage. We can find this voltage by using nodal
analysis on the actual circuit with no connection between A and B.

A

Vi,
2V k22 6L -

—a B

ks L2

Let find the Thevenin equivalent voltage of the circuit shown above. We
could use nodal analysis, and have two voltages to solve for, but in this case
we can also solve the problem using series parallel reductions, so let’s do it that
way. We can immediately see that the 3k$) and GkS) resistors are in parallel,
so we can combine them into one resistance: (ﬁ + ﬁ)_l = 2kQ. This 2k
resistor is in series with the 1k resistor above it, so we can add those together
to form a single 3k{) resistor. We end up with the circuit below:

+—

|l ST

2V
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Here, we want to find the voltage across one of two resistors. This looks like
a voltage divider. We can re-draw it to make that relationship clearer:

lks
YA +
%2 Vg,

Now we can use our voltage divider equation, Vi, = Vin%, to solve
for Vpp. We end up with Vp, = 1.5V.

Now we need to make another measurement so we can figure out what the
equivalent series resistor should be. Another easy measurement to make is the
current that flows when we short together nodes A and B. This is the short
circuit current.

A

knd et

2y ()32 ¢

In

O
\ 4

B

Remember the current through any resistor where both terminals of the
resistor connect to the same node is zero (there is no voltage across the resistor
so the current must be zero). This means that the 1k, 3kQ and 6k resistors
can be removed, since there is no voltage across them.

2 yT,
ZN
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Finding the current in this case is easy, since we can just use Ohm’s Law:

In=Y¥ =2V —9mA
N =TF = 1gn = 4Mma
The equivalent resistor must then be 1.5V/2mA = 7502
Now that we have the Thevenin voltage and resistance, we can plug them

back in to our black box model to come up with the following Thevenin equiv-

alent:
W

Problem 3.5 : Thevenin equivalent
Find the Thevenin equivalents of circuit A and circuit B below, at the ports
indicated by V.. Try to apply the rules you’ve learnt in this chapter.

—AAA
vV

AA
v
m

3.5.2 Norton Equivalent

It turns out that any linear i-V curve can also be represented by a current
source in parallel with resistor, in addition to the Thevenin equivalent that we
just described. Previously we said that any linear circuit could be represented
by V =1i- Rpp + Vrp, where Ry, is the Thevenin equivalent resistance and Vpp,
is the Thevenin equivalent voltage. But dividing both sides of this equation by
R, and rearranging terms gives:
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Since the current is the sum of two terms, it could be modeled by two
elements in parallel. One is a resistor, since the current is proportional to a
voltage, and the other term is a constant current, which can be modeled as a
current source. Thus we get Norton’s theorem which states that a linear two-
terminal circuit can be replaced by an equivalent circuit composed of a current
source and parallel resistor, as shown below:

T — A ) A
d Rn
o P 0|

We solve this in a very similar manner to solving for Thevenin circuits. In
this case the value of the current source is just the value of the short-circuit
current, since with no voltage across the terminals, the current through the
resistance must be zero. We found this before to be 2mA.

Since the Norton resistance is equal to the Thevenin resistance, we use the
same value we found before, 750 Q.
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Problem 3.6 : Norton equivalents
Find the Norton equivalent of the following circuits.

W—0 o
t
L Rg -
3T 3w Vout
4303 Ra ———0
() 3 C—)q -3 1
- 25 $F-
> 115 >
O

3.5.3 Converting from Thevenin to Norton

As we saw above, the Thevenin and Norton resistances are equivalent. Thevenin
voltage and Norton current can also be related using Ohm’s Law:

IR
Ve =y |
In
_—0 -_o
e ———————
Rty = RN
Vrn = INRy
_ Von
In= Rty

This result can be applied more generally to convert a voltage source in series
with a resistor into a current source in parallel with a resistor, and vice versa.
We can use this to simplify our nodal analysis. For example, if we wanted to
work with a current source rather than a voltage source in the circuit we solved
earlier, we could solve for Iy = % = 2mA and update our circuit as shown

below:
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-0

kS T—%_}% |
RNAL),
VAY; 6k < =7 @l\m > o

Problem 3.7

Converting from Thevenin to Norton:

Find the Norton equivalent of the following circuits - you derived their
Thevenin equivalents earlier.

Hint: The Thevenin equivalent resistance of a circuit is equal to the Norton
equivalent resistance of the circuit.

O
$Fe

™ <& N2 v

o, | o | 1
Sk 3 —-0

3.6 Superposition

For linear circuits there is one addition trick we can use to simplify our analysis
to better understand how different sources (voltage, current) affect the circuit:
we can take advantage of linearity. For linear systems, the voltage at any node,
or the current through any device will vary linearly with any of the sources in
the circuit. This means that the voltage at a node can be written as:

Va=k - Vi+ky - Vo..+R- 11 + ...

where V; are the voltage sources in the circuit, I; are the current sources in
the circuit, and k; and R; are the proportionality constants. Notice that the
voltage at each node is a simple sum of the contributions of the different sources.
Since each contribution doesn’t depend on the other sources, we can find the
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output voltage by computing the output from each source independently and
then adding these contributions together. Basically, it means that we will get
the same result by solving the entire equation at once or solving different sources
separately and then adding the results together.

Let’s try solving the circuit below. We can always use straight nodal analysis.
For this circuit, we could solve for the voltage at the node at the top of the circuit
- let’s call it V4. We could write our KCL equations as shown below:

ZmA

Va—=5V Va B
TR + y7rs) +2mA =0

5Va4 =20V +8V =0

Va =24V
Then we could use a voltage divider on the left branch of the circuit:

2k82 Va

koo - 2 2V

Ve=Va

However, since we have two independent sources, we can also use superposi-
tion to solve this circuit. Let’s start by finding the contribution of V, that comes
from the voltage source. First, we’ll zero out all other independent sources be-
sides the voltage source of interest, which in this case just means shorting the
2mA current source to create the circuit shown below:
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We'll ignore the resistor on the right side since it’s floating and no current
can flow through it. We can find Vx by using a voltage divider: V,, = 5V
2kQ _
SeaT2kOFTEG = 2V
Now we can solve for the contribution from the current source. First, we’ll

zero out the voltage source by replacing it with a wire, yielding the circuit below:

-
-

The right-hand circuit is redrawn to show the circuit a bit more clearly.
Note the polarity of V, now that we’ve flipped around the circuit. There are
multiple ways to solve this, but we’ll use a current divider to find the current
through the 2k resistor, then multiply it by the resistance to find V,. One
branch in our current divider has a resistance of 1k{). The second branch has
a resistance of 4k, since we have two 2k€) resistors in series. The 1k resistor
at the bottom of the circuit does not contribute to the current divider - since
it is not in parallel with any other component, the entirety of the 2mA current
flows through it.

. 1k B 2mA
1kQ+4kQ 5

I, =2mA = 0.4mA
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We have to be careful with the polarity here. We’ve solved for a current that
flows from the marked negative to the marked positive terminal of V,. This
will give us a negative voltage.

Vi = —0.4mA % 2kQ = —0.8V

Now that we have the contributions to V, from both independent sources,
we can simply add them together to find the total V,:

Note that this is the same answer that we got from nodal analysis.

Superposition also provides another method to solve for the Thevenin/Nor-
ton equivalent resistance. Because of superposition the actual circuit and the
equivalent should still be the same if we set all sources to zero. The Thevenin
equivalent circuit becomes just a single resistor, and the real circuit becomes a
collection of resistors. Going back to the circuit we worked on before:

|k |2

2V 3226 -
.o

To solve for the equivalent resistance between terminals A and B, we first
need to set all independent sources to zero. We want zero voltage across the
voltage sources, which means we need to short them (replace them with a wire).
We want no current across the current source, which means we need to open
them (take them out and leave the two nodes unconnected). In our circuit, we
only have one voltage source, which we’ll replace with a straight wire. Once
that’s done, our circuit looks like this:

A
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If we’d had a current source in place of the voltage source, we would cut
it out, leaving the 1k resistor unconnected to anything. A dangling resistor
makes no difference in the circuit since current can only flow through a loop, so
we would just ignore the resistor, as shown below:

5 A

Let’s return to our original circuit. We can simplify the right branch just as
we did when finding the Thevenin voltage, giving us this circuit:

—o A

13/} Ei3))
oB

This is just two resistors in parallel. We can easily combine these resistors
to form a single resistor, as shown below:

A
750
B
Problem 3.8
Superposition:

1. Find the output voltage of the following circuit using superposition.
2. Find the Thevenin equivalent of the following circuit. Your results from
part 1 should help you with this.

O

.
SR
Vi S0 Vout

6mA L
Ry SR3
200 <200
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3.7 Solutions to Practice Problems

Solution 3.1:

We can always choose one of the nodes in a circuit to be the ”reference”,
or "ground” to simplify the problem. In this case we choose the bottom
node for simplicity.

Then, there is only one voltage node of interest we need to solve for - the
node connecting R1, R2 and R3 together. Let’s call this node V.

By KCL, we know that I1+ 12+ I3 = 0. Then we can write the following
questions and solve for V:

I1+124+13=0
V””_12+ V. 1/35—24_0

1k 2.2k 22k
2.2-V, —22(12)+ Vo +V, —24=0
4.2v, = 50.4

V, =12V

o 12-12
===

I1 0

12
T 2.2k
12-24
22k

12 = 5.45mA

I3 = —5.45mA

Solution 3.2:

Re, = RT+ R6 || (R5+ R4 || (R3+ R1 || (R2 + R8)))

Make sure you understand how this equation came about. It simply sum-
marises the series and parallel relationships in the circuit.

Reqg = 1k + 1k || (1k + 1k || (1k + 1k || (1k + 1k)))
Req =1k + 1k || (1k+ 1k || (1k + 1k || 2k))
2
Reg =1k +1k || 1k + 1k || (1k + gk))

Reg = 1k + 1k || (1k + 1k || (1.667k))
Reg = 1k + 1k || 1.625k
Req = 1.619k
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Solution 3.3:

Circuit A: B9
it = 12 ————
Vout R1+ R2
2.2k
Vout =12- m = 8.25V
Circuit B: B3
it = 12— —
Vout R3 + R4
1k
=12 —— =3.
Vout ok oV
Solution 3.4:
Circuit A:
I1 =100mA &—6875m14
T ok T Y
12 =100mA 1k = 31.25mA
TR Tk pake T

Circuit B: The current divider equation doesn’t scale nicely to more
branches. So, when you see a circuit like this, it is easier to just use nodal
analysis. First, find the voltage across all the resistors:

V = 100mA - (1k || 2k2 || 4k7) = 100ma - 600 = 60V

I3=K:60mA

1k
%
I5 = L = 12.76mA

4k7
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Solution 3.5:

Circuit A:
Rrg = (R4 + R2) || R3 = 76002
1k
=5.— =1
Ve =5 g — 15V
Circuit B:

Ry = (R8 + R7) || R6 = 1.05k2

2k2

Solution 3.6:
Circuit A:
Ry = R1+ R4 || (R2+ R3) = 1.75kQ

To find Iy, we short the output ports and find the current flowing through
them.
The voltage across the current source under those conditions are:

Vewrrent = 100mA - (R4 || (R2+ R3) || R1) = 100mA - 429Q = 42.9V

_ chrrent _
Circuit B:
Ry = (R8+ RT) || R6 = 1.05k9)

1%

= — = A
% 5m.

Iy

Solution 3.7:

Circuit A:
Ry = Ry = 7609
5
Circuit B:

Ry = Rryg = 1.05kQ
)

=E=5mA

Iy




3.7. SOLUTIONS TO PRACTICE PROBLEMS

79

Solution 3.8:

1.) The general procedure is as follows:

First calculate the contribution of V1 to the output voltage (call this V1),
by removing the current source (replacing it with an open circuit).

Then, calculate the contribution of I1 to the output voltage (call this V,12)
by removing the voltage source (replacing it with a short circuit).
Finally, add the two voltages together to get V.

R2
Voutl =5V - ————— = 2.5V
i Rl + R3
R2 R2
out2 — Visource * e A . 1 2 N
Voutz = Vi ot omARUI(R2+ R3) - o
400
=09V - — = 0.6V
600

Vout = V;)utl + V:)ut2 =3.1V

Rry = R2 || (R1 + R3) = 2009

2.) We have already found Vg in part 1 of the question - Vpg = 3.1V.
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