Chapter 5

Representing Stuff with
Bits: Coding

A big part of electrical engineering is thinking about the electrical transfer
of information. This information is often in the form of numbers, but what
is the best way to go about sending this information? Computers are digital
machines that are have transistors that can perform logical operations and store
information, but transistors only store two possible values, True or False. If this
is the case, how do we send the value 73”7 Or ”71,000,000”? Or even ”3.14157”
How do we even communicate images, music, or text?

There needs to be a set standards, or codes, of which we can communicate
between computers. A quick search on Google on the definition of codes gives
us:

e a system of words, letters, figures, or other symbols substituted for other

words, letters, etc., especially for the purposes of secrecy.

e a system of signals, such as sounds, light flashes, or flags, used to send
messages.

e a series of letters, numbers, or symbols assigned to something for the
purposes of classification or identification.

In computers, the series of symbols that we use to send messages are going
to be in the form of binary bits.

A single bit can either be 0 or 1, but doesn’t really communicate much, so
what needs to be done is that a collection of bits will be necessary to send more
complicated information.

5.1 Unary Code

One implementation of sending only two possible values is to have a bit for each
value you wish to present. For example, if you a code with 4 bits, each one of

99

100 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

those bits could represent. This is called unary coding or one-hot coding
because one bit is on at a time.

Number Unary Code

0 0001
1 0010
2 0100
3 1000

Table 5.1: Unary Code for a 4-bit System

The advantage of this system is that it’s easy to use the code directly to
control individual hardware. If there were four LEDs that could needed to
turned on sequentially such that only one LED is on, one-hot coding could be
used to directly control the LEDs. This will actually be done for the LED cude
lab.

The most obvious downside is that the solution is not scalable as you go to
higher numbers. The number of bits you have is the maximum number that you
represent, so if you need to represent a very large number, you’ll need a very
large number of transistors.

5.2 Binary Numbers

Binary coding is a more efficient way of storing integer value and is very
similar to how humans represent numbers.

A majority of the people in the world use a decimal or base-10 number-
ing system. This means that we represent each digit in the number can have
potentially 10 different values, which are 0-9.

To get the actual final quantity of a number, for example 145, we start on
the right most digit of the number which is 5, multiply by 10° (which is just 1).
Then we move left to the next digit 4, multiply by 10!, then add it to 5, which
we get 45. Then we move left again to the digit 1, multiply by 102, then add it
again to our accumulating sum, which we finally get 45.

[10% [10" [107]
(L] 4[5]

Table 5.2: Decimal 145

145 =102+ 14+ 10" *4+10° %5

We can technically continue to do this as we continue to add more and more
digits, and the more digits we have, the larger the number we can represent.

5.2. BINARY NUMBERS 101

Now that we see how a base-10 system works, we can do the same thing
with bits in a base-2 system. Instead of multiplying each digit value by 10 to
the power of the digit index, we multiply each bit value by 2 to the power of
the bit index.

For example, let’s take the 8-bit value 00101010. To convert this value into
a base-10 number that makes sense to humans, we can do the same process
in base-10 to determine the actual value of this binary value. Remember, we
start at the right most bit. Then as we shift left, we multiply that value by 2
to the power of the number of bits we’ve shifted from the right most bit, then
accumulate that sum.

Table 5.3: Binary 00101010

42=2"%0+25%0+2°%x14+2*%x0+22%x14+225x0+2'x1+2°%0

This is great because in unary coding, 8-bits can only represent 8 numbers,
but with binary, the largest number that can be represented is 11111111, which
is 27 % 1420 % 1425 % 1424 % 1423 « 1422 % 1421 % 1420 % 1, or 255.

Now, let us try converting from a base-10 value into binary. What if we
wanted to represent the number 23 in 8-bit binary?

The process is to with the largest bit index with the right most bit index
being 0. Divide the number by 2 to the power of that index value, which will
be 27. The number we get as a result is the bit value for that index (should be
either 0 or 1) and then the remainder gets passed down to the next step. In this
case, the value is 0 and the remainder is 23.

Now the index value is 6, meaning

Operation | Output | Remainder
23/27 0 23
23/2° 0 23
23/2° 0 23
23/2* 1 7
7/23 0 7
7/22 1 3
3/2! 1 1

1/2° 1 0

Table 5.4: Converter Decimal 23 to 00010111

102 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

Problem 5.1 : Representing numbers in binary
1. Find the 4-bit binary representation of 15.

2. Find the 8-bit binary representation of 15.

3. Find the 8-bit representation of 101.

5.3 Arithmetic

Addition and subtraction in binary are very similar to their decimal counter-
parts. You add by carrying 1s and subtract by borrowing 2s (instead of bor-
rowing 10s).

For example, let’s examination how addition works when adding 11 and 3,
which are 1011 and 0011 in binary respectively:

Table 5.7: Addition step 3

We get the final result 1110, which is converted to 14 in decimal. This checks
out because 114+3=14.

And, for subtraction, we will subtract 9 and 3:

In the end, we get the binary value 0110, which is 6 in binary. This is correct
because 9-3=6.

5.3. ARITHMETIC 103

1 1
0 1
| [t]1]O]

Table 5.8: Addition step 4

1
10 I
00 1
ENENENEG

Table 5.9: Addition step 5

+0
0 |0fj1]1

L[[[o]

o
o
—_

212
+0| 0 |0O]1
0 0|1

L[[[o]

Table 5.13: Subtraction step 4

104 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

212
0| 0 |01
0 [0 [1]1
L [[1]o]

Table 5.14: Subtraction step 5

21

0] 0
0|0
L [t]i]o]

Table 5.15: Subtraction step 6

(R E=11 N

212
0] 0 |01
0 |0 |11
L0t]1]o]

Table 5.16: Subtraction step 7

Problem 5.2 : Binary arithmetic
Compute the following binary arithmetic problems. You can check your
answer by converting your binary solution into decimals.

1. 0010 + 0001 =7
2. 00001111 4 01100101 =7

5.3.1 Integer Overflow

It turns out that computers have a limited number of places to store numbers.
The number of bits (places) that a computer has to store a number depends on
the computer. Common numbers of bits computers use include 8, 16, 32, and
64. For example, Arduino Nanos use 16 bits to store integers.

There is a maximum value that can be stored in an integer. For example,
the largest 4 digit decimal number is 9999. Analogously, the largest 4 bit binary
number is 1111 =20+ 2" +22 + 23 =14+ 2+ 4+ 8 =15.

It turns out that the maximum value that can be stored in an n bit binary
number is equal to 2" — 1 (this can be shown by using the formula for a sum
of a geometric sequence). Thus, the largest unsigned integer that the Arduino
can store is 216 — 1 = 65535.

This limited number of places to store numbers can cause problems when we
want to get numbers larger than the maximum or smaller than the minimum.

5.4. NEGATIVE NUMBERS 105

For example, when we add 1 to the maximum integer, we get integer over-
flow.

Table 5.17: Integer overflow. 15+ 1 = 07

This problem stems from the fact that the leftmost value place has a carried
1 that can’t be added.

Similarly, when we subtract 1 from the minimum integer, we get integer
underflow.

2112121

I (R E=11N

0 0
0 0
1 1

el | K=l =]

Table 5.18: Integer underflow. 0 — 1 = 157

This problem stems from the fact that the leftmost value place has to borrow
a 2 that doesn’t actually exist.

Problem 5.3 : More binary sums

1. 1111 + 0101 =7
2. 11110001 + 00001111 =7

5.4 Negative Numbers

So far we’ve developed a system to represent non-negative integers, but what if
negatives numbers are needed?

One solution is to dedicate the most significant bit to the sign value and
set that value to 1. For example, the number 3 in 8-bit can be represented as
00000011. If we wanted to represent -3, we flip the sign bit, giving us 10000011.
Notice that while this solution is easy to flip the signs.

The downside however is that whenever we need to perform arithmetic on
these values, we would need to look at the sign bits to see if we need to add or
to subtract and that would slow down the operation. So we don’t do that, we
use two complement numbers instead.

106 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

5.4.1 Two’s complement

As discussed in the earlier section, overflow is observed when the final number
goes beyond the upper of lower bounds of the number.

Since numbers wrap around due to integer overflow and underflow, we can
just designate that certain numbers are negative, and use modulo (or for 4 bit
numbers, subtracting 16) to determine negative numbers!

This concept of using this circular wrap-around for negative numbers is
known as two’s complement.

unsigned overflow

binary

1100+{121-4 unsigned 0100
101X\ | \¢6 6 0101
10N 8
1010 9 0110

8
1000

8 i I

1001 signed overflow

Figure 5.1: Two’s complement circle

Since we don’t want the bits interpreted to be both —2 and 14 at the same
time, we're going to define two conventions for interpreting bits: unsigned and
signed.

Unsigned convention is exactly what you’ve seen in the previous section (bi-
nary without any negative numbers). Overflow and underflow occur at
the maximum integer and 0.

Signed convention is a little bit different. We want a way to represent nega-
tive numbers, so all numbers whose most significant bit (the leftmost bit)
is 1 will be negative. This also means that overflow and underflow occur
at a different location (see the two’s complement circle).

5.4. NEGATIVE NUMBERS

Binary Code Unsigned Value

Signed Value

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

Table 5.19: Binary Code for a 4-bit System, both Signed and Unsigned

For example, consider the interpretation of binary 1011.

Unsigned: We get 20 + 2! 423 =11,

Signed: We have unsigned 11, but the most significant bit is 1.
subtract 2number of bits — 94 — 16 5o we get 11 — 16 = —5.

And binary 0111:

Unsigned: We get 20 + 2! 422 = 5.

107

Thus, we

Signed: We have unsigned 5, and the most significant bit is 0. Thus, we have

5.

Also, changing the sign (multiplying by negative 1) is easy: just invert all

the bits and add 1.

1. Decimal 5 = Binary 0101
Invert bits: 1010
Add 1: 1011
Decimal -5 = Binary 1011
Invert bits: 0100

A S o

Add 1: 0101

108 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

7. Decimal 5 = Binary 0101

It turns out that, under two’s complement, the most positive number is a 0
followed by all 1s, while the most negative number is a 1 followed by all Os.

Problem 5.4 :

1. Represent the following numbers in 4-bit two’s complement form,
then in 8-bit two’s complement form.

e -8

2. Represent the following numbers in 8-bit two’s complement form.

e 15
e -15

5.4.2 Two’s Complement Arithmetic

The great advantage with Two’s Complement is that arithmetic is much easier.
No matter the sign, the number are simply added together. If two numbers need
to be subtracted, we simply perform the operation to turn the number we wish
to subtract away into a negative number, and then add the numbers together.
Using a 4-bit system, let’s first compute 2 - 6 in binary. We should get -4 at
the end, but let’s go through the process in binary.
We establish first that:

e 2is 0010 (2%)

e 6is 0110 (22 + 2! = 6).

Next we need to convert 6 into -6, and we do this by:
e inverting the bits: 1001

e add one : 1010

Finally, we can perform the addition of 0010 and 1010, which we should get
1100.

What is 1100 in decimal? Let’s converter this back into a positive number
and see

e invert bits: 0011

5.5. REAL NUMBERS 109

e add one: 0100

0100 is 4 (22), and this confirms our answer and that two’s complements
works.

5.4.3 Overflow in Two’s complement

Notice that arithmetic overflow can still exist in a Two’s complement system.
The largest positive number is 0 followed by only 1’s, so for an 8-bit system,
it would be 01111111. If you add 1 to that value, you will get 1000000, which
is a negative number in two’s complement. This is overflowing past the upper
bound.

Furthermore, the largest negative number is 1 followed by only 0’s, so for
an 8-bit system, it would be 10000000. If we add negative one to this value
(00000001 is 1, inverting gives us 11111110, adding one gives us 11111111), will
give us 01111111 where we lose an extra 1 due to overflow. This an example of
underflowing past the lower bound.

Be very cautious when performing arithmetic because it’s possible to go
past the upper and lower bounds. The maximum number of positive values
expressable by a fixed number of bits in a two’s complement system compared
to an unsigned integer system has halved because those values are not being
used to represent negative numbers.

5.5 Real numbers

To be done in the future. This section will talk about floating point number
representation.

5.6 Representing Other Types of Data

Now that representing integers is possible with bits, we can take this idea further
and use binary numbers to represent other values.

5.6.1 Characters

There are two common ways to encode characters. The first is ASCII (Ameri-
can Standard Code for Information Interchange). They use 8-bit numbers and
assigned letters, numbers, and other commands like ”enter”, ”backspace”, etc.
Since the numbers are 8 bits, you represent 28=255 values. Check out the link
http://www.asciitable.com/ to see what

The other is Unicode and has two encoding standards. While UTF-8 uses
8-bit and contains the similar encoding structure to ASCII, UTF-16 uses 16 bits
and can contain 65536 values. This encoding scheme include English characters
and other characters form Arabic, Chinese, Spainish, and many other languages.

110 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

The link of converter binary numbers to unicode value is here http://unicode-
table.com/en/.

It is imperative that both machines that are communicating in characters
need to both agree on a standard and not mix them up.

5.6.2 RGB Colors

All colors can be represented in the combination of red, blue, and green (RGB)
light of various intensities. While the eye has a very large dynamic range,
our screens/projectors are more limited, and generally 8 bits for each color are
enough. Cameras can record from 8 to 14 bits of intensity resolution per color,
depending on the quality (and size) of the light sensor. In std JPEG images,
these are then compressed into 8bit values. Thus most colors consists of 3 8 bit
values.

5.7 Error Correcting Codes

When sending digital information through a communication channel, all packets
of data will be transferred and received successfully in a perfect world, but this is
not always the case in reality. Various reasons such as noise, outside interference,
or simple system glitches causes information to be lost at some probability. For
example, if I send N packets of data through a stream, I may lose K packets.
The links where we lose data are called erasure channels.

Because of this limitation, how much data can we send in N packets if we
lose at most K packets? For every piece of data, we need to send it at least K+1
times. That way, the worst-case scenario would be if the K packets of data that
is lost are the same copies of data, leaving one copy left. Therefore, if we can
send 12 packets of data at once and we can potentially lose 2 pieces of data, we
need to replicate all data at least 3 times, meaning we can only send 12/3 = 4
packets of data at once that is copied three times.

This seems very limiting, since we duplicate all the data, which means that
most of the data being recieved will be copies of data that has already been
received. Perhaps there is a better way of sending data?

We can easily determine the upper bound of data that can be transmitted
through this link is (N-K), or the number of packets that are successfully sent
through the communication channel. However, in order for the reciever to get
this number of bits, each packet of data that gets through must have unique
information, which is hard to understand how we can do this, if we don’t know
which packets are going to be lost.

This seems like an impossible problem, until you realize that there no reason
you can’t send multiple pieces of data in the same packet. So rather than
sending one packet of information each time, you can send multiple packets
by adding them together.! Now we can make sure each data is replicated in

1If you are paying close attention you will realize that adding packets together might use
more bits than before, since it could generate bigger numbers. When this is done in practice,

5.7. ERROR CORRECTING CODES 111

multiple packets, while at the same time ensuring that each packet is unique
(up to N-K).

Let’s do an example of this:

Say that we need to send the numbers X1, X2, and X3 through a commu-
nication channel that sends 5 packets but can lose any two packets. If we send
the following 5 packets, it’s possible to recover X1,X2 and X3 no matter what
2 packets we lose:

o X1
o X2
o X3
X14+X2+X3

X14-2*¥X243*X3

For example, if we only received the values, X1, X2, and X1+X2+X3, we
can recover X3 by subtracting X1 and X2 from the final value.

What if we only received X142*X2+3*X3, X1+X2+X3, and X3? We can
simply perform (X142*X2+3*X3) - (X14+X2+X3) - 2%(X3) to get X2. Then
using X3 and X2, we can get X1 from the second value.

Bottom line is that if we as long as we have 3 linearly independent equations
with 3 unknowns, we can easily determine the three values.

This shows that if we can send N packets and we lose at most K packets, we
can acquire N-K=M packets. Another way of thinking about how to solve this
problem is by using linear algebra to create our new values that are a function
of the other pieces of data. If X is our input data and Y is the data that we
send, we can perform Y = AX where A is a NxM matrix.

Y = AX
zl 1 0 0
2 0 1 0] [x1
x3 =10 0 1] [x2
zl4+ 22+ 23 1 1 1 x3
14+ 2*xx2+3*xx3 1 2 3

Finally, to convert the original values back when we lose data, we take the
rows from A of the data that we recovered, invert the new matrix, then multiply
it by Y.

X=A"y"

Where * refers to the data you've received. If you lose the data x2 and x3,
the procedure you perform will be:

the addition is done modulo a large prime number, so the numbers don’t really get larger, but
to really explain this I would need to explain properties of modulo arithmetic which is really
outside the scope of this class.

112 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

-1

1 0 0 zl zl
1 1 1 zl + 22+ 23 = {x2
1 2 3 14+ 2*xx2+3*%xx3 x3

5.8 Time Multiplexed Codes

Imagine you have an LED screen that has 1920 x 1080 resolution, meaning that
is the number of pixels in the X and Y dimension. Each pixel has an RGB value,
so has 3 values for each pixel, and each value will require 8 bits How do we go
about controlling each pixel in the screen?

The first approach would be to wire each individual pixel and color to a
control circuitry, but is not a very scalable solution. For the 1920 x 1080 monitor,
the number of pins needed to power the screen will be 1920 * 1080 * 3 * 8 or
around 48 million bits. This doesn’t seem very scalable. Moreover, we will need
a 48 million transistors to control every pixel in the screen, meaning we’ll need
to use a 48 million bit long binary number.

How do we go about solving this issue? The issue is that if we send the
data all at once, the amount of transistors and wiring needed to do this will
enormous. How about instead of sending everything all at once, what if we send
data sequentially in time?

This concept is called Time Multiplexing, or Serial Communication.
Many common communication protocols take advantage of this concept, such
as Ethernet, USB, 12C, SPI, JTAG, and many more. The number of wires
needed to transmit data is relatively small because the data sent through those
communication channels is sent as packets over time.

Case Study: LED array

A 4 by 4 by 4 LED cube is constructed for the third lab. If we controlled
each LED individually we would need to use 4*4*4=64 wires for a pin to LED
connection. Our Arduino doesn’t have that many pins, so how do we use time
multiplexing to reduce our pin count?

The first point to make is that an LED can only turn on when there is
current flowing through the LED. This is only possible when the positive end of
a voltage source is connected to the LED from the Anode end and the negative
end is connected to the Cathode end.

The second point is that we don’t need to have all of the LEDs on at once.
Suppose we can only turn on only one LED on at once, rapidly alternating
the LEDs we turn will trick our eyes into thinking that all of those LEDs are
on. This concept is called optical persistence and is the trick to using time
multiplexing to turn on LEDs serially. In the cube we will use this idea, but
will turn on 8 LEDs at a time, so we only need to have 8 time slots.

Note that optical persistence only works if you are turning on and off the
LEDs fast enough. If not, then your eyes will be able to see the LEDs flashes.

Let’s examine a row of four LEDs and connect all of the anodes together to
a positive voltage as shown in Figure 5.2. If we wanted to turn on the first LED

5.8. TIME MULTIPLEXED CODES 113

from the left, we need to allow current to flow through the LED by connecting
its cathode low (of course through a current limiting resistor that is not shown)
and leave the other cathodes connected high. Similarly, if we wanted to turn
on just the second LED, set cathode of the second LED low and set the other
cathodes high.

Figure 5.2: One row of LEDs

Finally, if we wanted to turn on the 1st and 3rd LED, we can set both
the first and third cathode low (again using a current limiting resistor on each
cathode). Right now, we can control 4 LEDs with 4 pins, but what happens
when we start connecting multiple rows together? Let’s do this such that all
LEDs in the same row have their anodes connected and all LEDS in the same
column have their cathodes connected. See Figure 5.3 for the schematic.

Notice with this configuration we can control 16 LEDs with 8 pins. Four
pins control the rows while the other four control the columns. In this design it
is critical that only one row is driven to Vdd at a time, while any column can
be driven low to turn on the desired light in that row.? If you notice in Figure
5.3, there are four LEDs that are in the array. How would we go about lighting
up those LEDs by using Time Multiplexing?

The driver will sequentially turn on TO for a short time, and then rotate
through T1-T3 for the same time each before returning to TO and repeating the
cycle.

Let’s look at what happens when T3 goes high and everything else is low.
Clearly the LEDs connected to TO, T1, and T2 will be off, since their anodes
will not be able to support any diode current. For the top row, there will a path
from a high voltage to a low voltage through the four LEDs on the top row of
the array. In other words, current can flow from T3 to NO, N1, N2, and N3,
which causes all four of those LEDs to turn on.

However, what if we only want to have the second LED light up, like what
is show in the figure? In order to prevent current flow from T3 to NO, N2, and

2Note that we just chose to drive the anode sequentially, since in our design they are
driven by external pMOS devices and can drive more current. It is possible to drive the
cathode column low one at a time, and then drive any of the rows high to light LEDs in that
column, but then we would need to have external nMOS transistors driving the columns to
support the high column current.

114 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

Lk

X ¥ ¥ ¥

NO N1 N2 N3

Figure 5.3: Four rows of Time Multiplexed LEDs

N3, we will need to set those pins high. That way, both ends of those LEDs will
be high, meaning there is no voltage drop across those LEDs, and it will no be
on.

Furthermore, if a row is low and a column is high, those LEDs won’t turn on
either because these LEDs can only function with current going in one direction.
If the cathode has a higher voltage than the anode, no current will flow because
the LED is a diode, and the LED will be off.

As a summary, in order to turn on the LED on the first row and second
column, we set T3, NO, N2, and N3 high and we set T0, T1, T2, and N1 low.

Overall, we turn on an LEDs by having the anode must be switched high
and the cathode must be switched low. This is done by setting your target row
or anodes high and your target column of cathodes low.

During the next period TO is driven high, but since we don’t want any of
those lights on, all the columns NO-N3 are driven high. Then TO is driven low
and then T1 is driven high, and again all the columns must be high to keep
these lights off. During the next period T2 is driven high, so NO-N2 are driven
low, and only N3 is driven high to light all but the right LED in that row.

Case Study: Keyboard

5.8. TIME MULTIPLEXED CODES 115

413

%
o

] ¥
K ok K

=%

- N0 —N1 N2 s

Figure 5.4: Turning on LED on row T3 and Column N1. Polarity is noted.

Now that we can figure how to output multiple things by multiplexing, what
if we engineered something that can input multiple things by multiplexing? An
example of something that takes a lot of inputs is a keyboard, where is has a
lot of buttons that need to be read.

Similarly enough, we can perform time multiplexing to determine whether a
key is pressed down or not without having to wire every single key to a wire.

Just like before, let’s lay down a row of buttons.

Let T3 be the input pin to a microcontroller, and let’s make it be a pulled-
down pin, meaning it’s default input value is low. In order to trigger a reading
of the button, the button needs to short the input pin high.

If we initially set NO-3 low, no matter what button we press, the switches
will always short T3 to ground.

But what happens when we set NO and only NO high? As long as NO gets
pressed, T3 will get pulled high, but if NO isn’t pressed, T3 stays low. If we
register a high on T3 when we apply high on NO, we know the switch connecting
NO and T3 got pressed. Also, notice that if we pressed the other switches,
nothing happens because T3 will still get connected low.

Next, we quickly set N1 and only N1 high. If the switch connecting T3 and

116 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

TE—‘.?;I o~
NO N HTL '3'3

Figure 5.5: Turning on LED on row T3 and Column N1. Polarity is noted.

N1 gets pressed, then T3 gets pulled high. However, pushing the others switches
don’t do anything to T3.

What this shows is that if we rapidly select pins NO-3 to go high individually,
we can read which button gets pressed. If we read them rapidly enough, we can
detect which of the four buttons are pressed.

As a result, we can do exactly the same thing we did for the LED array
which is to connect all the columns together to the same pins to get an array of
switches that can be sensed.

5.9. SOLUTIONS TO PRACTICE PROBLEMS 117

5.9 Solutions to practice problems

Solution 5.1:
1.)The most significant bit of a 4-bit binary representation has a value of
23 = 8. From then, the next bits have values of 22 = 4,2! = 2,20 =
respectively.

15=1-22+1-22+1-2"+1.2°

Therefore, the binary representation of 15 in 4-bit binary is: 1111.
2.)The 8-bit binary representation of 15 would be 00001111.
3.)The 8-bit binary representation of 101 is 01100101.

101=0-2"41-2641-2540-24+0-2341-224+0-2' +1-2°

Solution 5.2:
1.) 0010 + 0001 = 0011; In decimal: 2 + 1 =3
2.) 00001111 + 01100101 = 01110100; In decimal: 15 + 101 = 116

Solution 5.3:
1.) 1111 + 0101 = 10100; In decimal: 15 + 5 = 20
2.) 11110001 + 00001111 = 100000000; In decimal: 241 + 15 = 256

Note that in both cases overflow occurs, and we had the extend the
number of bits we are using. In a real computer this often isn’t possible
(for example, your Arduinos have a limited number of bits you can use
for numbers), and we would simply overflow (wrap around). In that case,
question would wrap to 5, and question two would wrap to 1.

Solution 5.4:

1. The 4-bit two’s complement form and 8-bit two’s complement form
of the numbers are as follows:

e 4-bit: 0101 8-bit: 00000101
e 4-bit: 1011 8-bit: 11111011

e 4-bit: You can’t! 4-bits is not enough to represent 8 in two’s
complement - the highest we can go is 7. 8-bit: 00000111

118 CHAPTER 5. REPRESENTING STUFF WITH BITS: CODING

e 4-bit: 1000 8-bit: 11111001

2. The 8-bit two’s complement form of the numbers are as follows:

e 00001111

e 11110001

Observe the difference between the positive of a number and the nega-
tive of it. Once you’ve figured out how two’s complement works, the rule
where you can find the negative version of a number by flipping all the bits

and adding 1 will always work (as long as you are still within the allowable
range of the number of bits you have!)

