Chapter 6

Capacitors and RC Circuits

Up until now, we have analyzed circuits that do not change with time. In other words, these cir-
cuits have no dynamic elements. When the behavior of all elements is independent of time, the
behavior of the circuit as a whole will be independent of time as well. This behavior is called the
steady-state behavior of circuits. It can also be thought of as the equilibrium a circuit reaches
after a sufficient period of time.

In this chapter, we will explore a new type of linear device called a Capacitor. These devices are
used for storing energy in a circuit, which allows us to have memory, adjust the circuit’s response
to input voltages of different frequencies, understand the gate input of MOS transistors, and do
many other useful things. Although capacitors do not impact the steady-state behavior, they will
change the way in which voltages and current transition from one state to another.

6.1 Device Characteristics
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Figure 6.1: Capacitors store energy between two charged plates

Capacitors are two-terminal devices that store energy in an electric field between charged parallel
plates, seen in Figure 6.1.) When we try to force a current where there is a gap, positive charge

Thttps://en.wikipedia.org/wiki/Capacitor
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builds up on the positive terminal, and negative charge builds up on the negative terminal. Thus,
there is a voltage (and, therefore, electric field) across this gap.

The capacitance of a capacitor is governed by the area of these plates, the distance between
them, and the material, called the dielectric, between the two plates according to the following
equation:
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where ¢ is the dielectric constant, A the area of the plates, and d the distance between them. For
the purposes of this class, you do not need to worry about this equation; however, it shows that the
capacitance of a capacitor is a function of its shape. The larger the area of the plates and smaller
the gap, the higher the capacitance.
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Figure 6.2: Electronic Symbols for Capacitors

Some capacitors are unpolarized, meaning the two terminals are interchangeable, like a resistor,
and others are polarized, meaning they have a distinct anode and cathode like a diode. The cathode
of the latter type is labeled with either a ”-” or a stripe down the side, shown in Figure 6.3.2 These
also have different circuit diagrams, seen in Figure 6.2.° If a polarized capacitor is connected
backwards, part of the internal insulator erodes, the capacitor becomes a short circuit, the huge
amount of current it now conducts boils the electrolyte fluid, pressure builds up, and the capacitor
explodes. In other words, double check the polarity before connecting these!

6.1.1 Governing Equations

We previously mentioned a capacitor is a linear element; however, it is not a resistor. How can
this be? Capacitors actually relate stored charge ) in coulombs to the voltage across the capacitor
V in volts:

Q=0cv (6.1)

As we saw before, C is the capacitance of the specific capacitor with which we are working, and
it is a constant. Capacitance is measured in Farads (F). Typically we don’t work with @ in our
circuit calculations. Instead, we prefer working with circuits in terms of current ¢ and voltage V.

%https://en.wikipedia.org/wiki/Electrolytic_capacitor
3See 1
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Figure 6.3: Polarized Electrolytic Capacitors

We know current is the flow of charge @ over time, or d@Q/dt, and we can exploit this to modify
the above equation by taking the derivative of both sides with respect to time:

Q=cv
Q  _dv
& _ ot
dt dt

qv
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This equation, which relates the current through the capacitor to the change in voltage across it,
is much better to work with. Note that the equation has a linear relationship between i and V. If
you double i (for all time), V doubles and vice versa.* EE 102A will formally define linear systems.

Because we have dV//dt in this equation, we can deduce it takes current to change a voltage across
a capacitor, and the faster you try to change the voltage, the more current that is required. Since
most circuits can supply only a fixed amount of current, capacitors will prevent the voltage
across them from changing rapidly. Said differently, capacitors look like voltages sources for
short periods of time (for a small dt). While the voltage across a capacitor can’t change rapidly,
there are no constraints on how fast the current can change. The current through a capacitor can
change from 0 to a large value instantly: current can change abruptly.

If you think of charge as a fluid, then you can think of a capacitor like a large tank.” The height
of the water in the tank represents the voltage on the capacitor. While we can instantaneously turn
the flow of water off and on (changing the current), we cannot instantaneously change the water
level of this tank. Similarly, we cannot instantaneously change the voltage across the capacitor. Its

4Said differently, d/dt might be a strange operator, but it is linear

5You need to be careful with this analogy, since there is plus and minus charge, and there is not negative water.
When water flows into a tank to fill it up, it only flows into the top of the tank. With a capacitor there are really
two tanks. Charge flows into the top tank, which starts filling it up, but and equal amount of charge also leaves the
bottom tank, filling the bottom tank with negative charge. A better fluid analogy would be to model a capacitor
as two tanks. The first one is right side up and empty, and the second is upside down and full. When liquid flows
into the top tank, to start to fill it up, and equal amount of liquid flows out of the bottom tank, and is replaced by
bubbles.
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value changes as a result of the integration of the current being added to the tank/capacitor, and
the value of the capacitance is related to the area of the tank.

Because capacitors are energy storage devices, we are also interested in determining the energy
stored in a capacitor. We know that power describes energy at a specific instant of time. Therefore,
we can solve for the power P, substitute values from the equations above, and integrate over time
to get energy:

This equation tells us that the voltage across a capacitor determines the energy it stores.

6.2 Capacitors in Series and Parallel

We would like to create equations to simplify multiple capacitors in a circuit. To do this it would
be nice to see if there was an equivalent “resistance” for a capacitor. We can’t really find one, since
the current depends on AV not V', but we can say that AV = i%. This is interesting in two ways.
First is says that the effective resistance is related to 1/C, so circuits where R adds will need to
combine 1/C. Second it shows how the resistance depends on the AT. If AT is small, the effective

resistance will be small, but if the time is large, the resistance will also be large.

6.2.1 Capacitors in Series

Like with resistors, when we have multiple capacitors in a circuit, we often want to replace them
with one equivalent capacitor. We’ll start by analyzing capacitors in series:

Cq

V’il

Cy
{Zé

Using our equation for the current through a capacitor, we have i; = Cy %l and iy = CQ%Z where
V1 and V, are the voltages across C7 and C5 respectively. We want to find one capacitor with
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capacitance C¢, such that the voltage across it is Vi + Vo = V;,+ and the current through it is
i = i1 = is. We know from KCL that i; = i. With this information, we now rearrange the
equations to get:

. d ., dVs
’Ll—ClE Z2—612 dt
i b _
C;  dt Co  dt

This looks a lot like our equation for current through a capacitor. Thus, we have the following
relation for capacitors in series:

S S
Oeq_Ol Cy Cp

This makes sense intuitively, as both capacitors will be experiencing the same current, and the
voltage across both will increase with respect to this current. Thus, the total voltage across both
capacitors will increase at a greater rate than either of the voltages accross individual capacitors.
We also notice that this relation looks like the relation for resistors in parallel.

6.2.2 Capacitors in Parallel

We also want to be able to replace capacitors in parallel. Let’s analyze the following:

il A\ 4 Y 7:2
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By KVL, we know that the voltage across C; must equal the voltage across C. Call this voltage
V. Also, by KCL, we know that ¢ = i1 + i5. We substitute the currents through each capacitor:

=11 + i2

dv dv
= Cl% + CQE

av

= (C1 + Cy) ’

Thus, we have the following relation for capacitors in parallel:
Ceq:Cl—l—Cg—i-...—i-Cn

Going back to our water tank analogy, the summation makes sense. Putting two capacitors in
parallel is like putting two water tanks in parallel. We also notice that this relation is similar to
resistors in series. In this section, we have seen that the equivalent capacitance equations are the
same as the equivalent resistance ones, but the series and parallel behaviors are flipped.

6.3 Capacitors in real circuits

Capacitors, like many electrical components, come in a variety of shapes and sizes. Larger capaci-
tance and higher voltage compliance generally comes with larger size. Electrolytic capacitors have
the largest capacitors per unit volume, but they have limited voltage and as polarized, as described
before.

6.3.1 Capacitors to Control Supply Voltage

In our circuits, we often want a constant, DC voltage source. While this is perfectly fine on paper,
in practice, we know that sources are not ideal. As you draw more current, especially if the change
is sudden, voltage will drop. We can mitigate these effects by connecting a capacitor between Vdd
and Gnd. We know capacitors resist changes in voltage, so the capacitor will work to keep Vdd
constant. Essentially, the capacitor acts as a energy reserve for the circuit, supplying energy when
the demands of the circuit exceed the battery’s (or other voltage source’s) capabilities.

6.3.2 Capacitors in MOS Transistors

In a MOS transistor, there is a capacitor between the gate and the source. From the equation of a

capacitor
dav
i1=C—
dt
we see that if ¢ = 0, then % = 0. As a result, if there is no current, the voltage across the capacitor
(from the gate to the source) remains constant. For example, if we simply disconnect the gate

terminal from Vdd, without driving it to another voltage, it will remain at Vdd. Thus, we need a
current to cause a change in voltage and change the gate voltage of the MOS transistor.
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6.3.3 Real Wires

All real wires also have capacitance. As we saw above, this means wires require some charge to
change their voltage. Remember that voltage is defined as potential energy per charge, so this
observation makes sense in the context of our definition. This means that any time we want to
change the voltage of a wire, we need charge to flow into it. The amount of charge we need to
produce a given change of voltage in a certain amount of time is governed by the equation:

. av
1= OE

We're starting to see a theme. Capacitance governs how fast we can change voltages and the energy
we need to do so. This result governs the speed and power consumption of modern electronics,
including your computers!

6.4 RC Circuits

6.4.1 RC Circuits at DC

Now that we’ve seen how capacitors behave, we can use them in circuits. First we’ll consider the
case when capacitors are in circuits with DC sources. Let’s examine the circuit below:

10kS2

MV

20k - N

n___ O § 20k v2 (Y

10V — _

We want to find v; and vs. First, notice that all voltage sources in this circuit are at DC, in other
words, they output a constant voltage across them. This means there is no change in voltage over
time. Refer back to the equation relating voltage and current across a capacitor:

’L:O%

We see that if dV/dt = 0, then ¢ = 0 as well. In terms of our water tank analogy, the tanks are
full, so no flow (current) is going to go into them. Thus, capacitors are DC open circuits. We can
essentially remove them from the diagram before doing our analysis, shown below:
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/\1;\k/§</
| |
v § 20k V2
10V X [

Now we can use the techniques we already know to deal with circuits with only resistors. In this
case, both voltages can be found with voltage dividers:

20k

20kQ + 10kQ
v1 = 10V ( i > =6V

20k + 20k + 10k

2042
=10V =4V
2 (ZOkQ + 20k + 1om>

We find v; = 6V and vy = 4V.

6.4.2 Charging a Capacitor

Often we will want to find out how a capacitor charges or discharges and the time it takes to do
so. We'll first consider the former case. We know that the voltage across a capacitor cannot change
instantaneously because the current cannot be infinite. This is equivalent to filling up the water
tank with a finite flow of water into the tank. Let’s look at the following circuit with DC voltage
source Vg. Suppose that the switch was initially disconnected and then connects at time t = 0 and
the initial value of V- at t = 01is OV.

R

> ANAN——

+

Vs Cj) Ve __—_C
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Let’s look at the marked node between the resistor and the capacitor. We can apply KCL here:

Vs — Ve

R ©

Vs — Ve _ dVe

R dt
dt  dVe
RC Vs — Ve
t 1 /t 1
—di= | ————av,
/o RC o Vs —Vo €
L s —ve)+C
RC_ S C 1

6'261;7é = VS — VC

We can solve for C; by plugging in the initial condition Vo = 0 at t = 0, and we find that Cy = Vg.
Thus,
Vo(t) = Vs(1 - e7¢)

Now that we found the equation that describes charging a capacitor, we do not have to solve the
differential equation every time we encounter an RC circuit. Note that the capacitor charges to
match the voltage of Vg. This makes sense with our above model of capacitors at DC. If we wait
a sufficiently long time, Vo — Vg and ic — 0. Often we replace RC' with 7 ("tau”). This is called
the time constant of this RC circuit and has units of seconds. The fact that ohms and farads
multiply to give us seconds probably seems a little weird at first. See if you can convince yourself
of this by replacing Farads with coulombs per volt and ohms with volts per ampere. Then recall
that current is the flow of charge, so amperes are coulombs per second:
Vv ¢ V A-s

Q- TS e e m— T e— pr—
F=3v=2 v ~°

Replacing RC with 7, we have the charging equation:
Vo(t)=Vs(l—e™)

where Ve (0) = 0 and Ve (oo) = Vg

The charging equation is illustrated in Figure 6.4.5. Notice that the capacitor reaches 95% of its
final value after three time constants (¢t = 37). Often, in practice, we will have events that trigger
after a certain voltage threshold has been reached. We know all real wires have some amount

Shttps://en.wikipedia.org/wiki/RC_circuit
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Figure 6.4: Charging a Capacitor

of capacitance (which can be modeled with a capacitor) and some small amount of resistance;
therefore, we can now calculate how long it takes to drive a wire to a voltage we desire.

5V

Rpullup

NV

C

pin

For example, on the useless box, the input switch pins were driven to 5V when the switches were
disconnected. We now are equipped with the tools to find out exactly how much time elapsed
between the switch opening and the pin reading HIGH. By modeling the circuit as an RC circuit, we
can calculate the time to reach the threshold above which digitalRead() returns HIGH. Problems
like these arise in many situations, from calculating the speed of communication protocols (for
example, how fast your laptop and Arduino can communicate) to calculating the speed logic gates
can turn on and off. We will examine the latter in the next section.

6.4.3 Discharging a Capacitor

We motivate the discharging capacitor calculation with an example. We know computers are made
of CMOS logic circuits. Let’s examine the inverter below. This logic cell drives a wire, which we

know has a small amount of capacitance.
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the pMOS transistor will be on and the nMOS transistor will be off.

We can model the transistors as voltage dependent switches. Since we are driving the input to 0V,

Vad
R
Va
ov
* R
Ve _—_— C

transistor turns on:

Assuming this circuit has been in this state for a sufficiently long time, we know that Vo = Vyq.

At t = 0, let drive the gate voltage Vg to Vyg so that the pMOS transistor turns off and the nMOS
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Vi
é R
Ve
5V
- R
C

Intuitively, we know that the capacitor now has stored energy in it, which will discharge across the
resistor. We can characterize this over time by applying KCL at the node above the capacitor:

0-Vo _dVe

= O—

R dt
dt  dVe
RC ~ —Vg

L L
—dt:/ ——dVg

Kae e = V(t)

We know that the initial value of Vi(t) is Vg, so we have:

Vo(t) = Vige ™o

From this equation, we observe that the output wire of this logic gate cannot change from Vgq to

Gnd immediately. In fact, this reality is what governs the speed of your computers, as all the digital
logic in your CPU takes non-negligible time to switch states.

6.4.4 General form for charging and discharging

For circuits like those we saw above, we do not have to go through the process of solving a differential
equation each time. The general solution is:

Vo(t) = A+ Be=
Here, A + B is the initial value of Vo and A is the final value of V. Remember that 7 = RC.
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6.4.5 Dealing with multiple capacitors, resistors, or sources

So far all the examples we've seen have only had one capacitor, one source, and one resistor.
However, we can use the tools we have to simplify more complex circuits into this form.

Multiple Capacitors in a Circuit

Let’s first consider what happens when we have multiple capacitors in a circuit:

Vs (f) m—

We can use the formulas for capacitors in series and parallel to collapse these capacitors into one

capacitor with some C¢q. First collapse the two capacitors in series into Ceq1 = 061‘14_0022' Next, we

add capacitors in parallel to get C¢q = C_c;%g + C5. Now we can redraw the circuit in a more
familiar form:

Ve @) —— C= G 4

Multiple Resistors in a Circuit

Now let’s consider a circuit with multiple resistors around some capacitor:
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Ry Ry

NWW——T VWV

Vs (f) p— §R3

We know that a two terminal circuit with linear elements can be modeled by a circuit with a
single voltage source and resistor in series, also know as a Thevenin equivalent circuit. Because we
like working with RC circuits that only have one resistor and one source, we will try to collapse
everything around the capacitor here into a Thevenin equivalent circuit:

Ry Ry

Vs C_f) Vi H Ry

First, we see that Vg, the open circuit voltage across the terminals, can be found with a voltage
divider:

Ry + Rs
Vig =Vs | =—22 3
T S<R1+R2+R3)

To calculate the Thevenin equivalent resistance Ry, we set the voltage source to zero :

Ry Ry

VTH § RB
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We see that Re and Rj3 are in series with each other, and (R2 + R3) is in parallel with R;.

(R2 + R3) Ry

firn = (@l 4 80D = 0, TRy 1

We now have a Thevenin equivalent circuit that connects to the terminals of the the capacitor:

Rry

Vru CD —— Cg

This circuit is now in a form we know how to solve. Multiple sources and multiple resistors are
both handled using Thevenin equivalent circuits (they actually do make our lives easier!). In the
numerical example below, we examine a circuit with multiple sources and multiple resistors.
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6.4.6 A numerical example

Let’s find Vi (¢) for ¢t > 0 in the circuit below.” Assume the switch has been open for a long time
and is closed at t = 0.

2Q t=0 6Q

A XA~

15V<f> Ve —— iF C;) 75V

First we determine the initial voltage across the capacitor, V(0). We know that the switch was
open "for a long time.” Thus, we can assume that the capacitor was acting as a short circuit before

the switch is closed.

20

]

15V C‘D Ve (0)

We see that V(0) = 15V. Now, we will consider what happens for ¢ > 0. First, we wish to
manipulate our circuit to get the problem into a form we know. (Alternatively, you can write out
and solve the differential equations.) We will take out the capacitor and turn the remaining circuit
into a Thevenin equivalent circuit. After we have the problem in a form with one source and one
resistor, we can apply the general form equation.

"Taken from Fundamentals of Electric Circuits, Fifth Edition by Alexander, Sadiku
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2Q 6Q

— VWV l A"

15V @) Ve G) 75V

To find the Thevenin equivalent resistance, we zero all sources, leaving two resistors in parallel:

2Q 6

We also can see that the voltage drop is®

15V + 7.5V 45V
Vs = 15V — 2Q(i) = 15V — 200 <;)

%0 1% o) 9.375V

Thus, our circuit for ¢ > 0 is below:

8For a more detailed explanation of calculating Thevenin equivalent circuits or voltages and resistances, please
refer to the respective sections of the reader.
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1.580

%7

+

9.375V C_F) Vo —

Wl

Now we have a form we can solve easily with our general form equation.
Ve(t) = A+ Be=
We know that:
e V(0) =15V

e R=1.50Q

e Vo(oo) =9.375V
We calculate:
e A=Vc,a = Vo(oo) = 9.375V
e A+ B=15— B =5.625V
e T=RC=150(3F) =45
And finally we substitute these values into our general form equation:

Ve(t) = (9.375 4+ 5.625¢ 2V for all t > 0
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6.5 Summary

Capacitors are linear devices that store energy in electric fields. They can be polarized or
nonpolarized.

Voltage acrross a capacitor and current through it are related by i = C Cfi—‘t/

The energy stored in a capacitor is %C’V2

Capacitors in series can be replaced by an equivalent capacitor C%q = C% + C% 4+ 4+ Cin
Capacitors in parallel can be replaced by an equivalent capacitor Cey = C1 +Co + ... + Cy,
In DC circuits, meaning all the voltage sources are constant, capacitors act as open circuits.
The time constant of a capacitor is 7 = RC'. Its units are seconds.

The general equation for charging or discharging a capacitor in circuits with one voltage source
(if charging) and one resistor is Ve (£) = A+ Be = where A + B is the initial value of V¢ and
A is the final value of V.

When you have multiple capacitors in a circuit, you can often combine them into a capacitor
with some Co,

To deal with more complex problems, use a Thevenin equivalent circuit to change the problem
into a form you know
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