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Our study of capacitors and inductors has so far been in the time domain. In some contexts, like transient
response, this works fine, but in many others, the time domain can be both cumbersome and uninsightful.
As we hinted last lecture, the frequency domain can give us a more powerful view of how circuits operate.

Quick reference

Impedance ZC =
1

j2πfC
ZL = j2πfL ZR = R

At DC, looks like open circuit short circuit resistor

At very high frequencies, looks like short circuit open circuit resistor

Some preliminary observations

Recall that, in a capacitor, i = C dv
dt . What happens if the voltage across the capacitor happens to be

sinusoidal with amplitude V and frequency f , that is, with v(t) = V sin(2πft+ φ)? We would then have

i(t) = C
dv

dt
= 2πfCV cos(2πft+ φ) = 2πfCV︸ ︷︷ ︸

I

sin
(

2πft+ φ+
π

2

)
.

That is, the current is also sinusoidal with the same frequency, a π
2 phase shift, and an amplitude of 2πfCV .

Ignoring phase, we might define a quantity, the ratio between the amplitude of voltage V and amplitude of
current I,

V

I
=

V

2πfCV
=

1

2πfC
.

Similarly, for an inductor, we can show that if i(t) = I sin(2πft+ φ), then

v(t) = V sin
(

2πft+ φ+
π

2

)
, where

V

I
= 2πfL.

Finally, for a resistor, we can show that we would have V
I = R.

Impedance

Inspired by this observation, we define the impedance of a capacitor ZC , of an inductor ZL and of a resistor
ZR to be

ZC =
1

j2πfC
, ZL = j2πfL, ZR = R.

You’ll have noticed that a j mysteriously appeared in there. The salient thing to know about this is that it
represents the phase change (by π

2 ) we brushed over above.1

1For those who have studied complex numbers, this relates to its argument.



More precisely, j is defined to be the number such that j2 = −1, and is known as the imaginary unit. You
might have seen this in mathematics, where it took the symbol i. You probably thought that such imaginary
ideas would never have real applications. As it happens, electrical engineers have very elegant uses for it.2

In this class, we will write j in our expressions for completion, but when performing precise calculations, we’ll
just pretend it’s not there. Naturally, this will lead to answers that are not quite right.3 For our purposes,
this doesn’t make much difference. (Fair warning: in some other applications, it makes a huge difference.)

Extreme cases

The special case f = 0 indicates how the circuit responds to the DC component of a Fourier series. We say
that this is the circuit’s behavior at DC. In this case, ZC =∞, so a capacitor looks like an open circuit; and
ZL = 0, so an inductor looks like a short circuit.

The opposite extreme is when f →∞. This isn’t physically realizable, but it provides an intuition for how
circuits will behave at very high frequencies. In this case, ZC → 0, so a capacitor looks like a short circuit,
and ZL →∞, so an inductor looks like an open circuit.

f = 0 (DC) f =∞

ZC ↓ decreasingZC ↑ increasingopen short

ZL ↑ increasingZL ↓ decreasingshort open

ZR constantZR constantstill R still R

Note that our DC characterizations match the steady state from last week. This isn’t a coincidence; in fact,
the “steady state” we discussed is more accurately called the DC steady state (in contrast to AC).

Resistors don’t exhibit frequency-dependent behavior. They just stay with ZR = R, always. For this reason,
we often don’t bother replacing R with ZR in our algebraic work.

Circuits in the frequency domain

Armed with our new tool, we can proceed to analyze circuits with sinusoidal sources, with no derivatives in
sight—see Examples 1 and 2. In fact, because impedance represents a ratio between voltage and current,
in the frequency domain, we can use impedance to analyze circuits as if they were a resistor network. The
only difference is that these impedances can be frequency-dependent.

But there’s still more. Because the frequency domain is just a means of expressing a signal as a sum of
sinusoids, we can use a superposition-based argument to see that circuits just operate on each frequency
component of an input signal independently. That is, any voltage or current in the circuit can be found
by (1) decomposing the input into its frequency components, (2) applying our impedance-based analysis to
each frequency component, and then (3) adding the results together.

In many circuits, the output amplitude Vout is just a (frequency-dependent) multiple of the input amplitude
Vin. In such cases, we often talk of the gain of a circuit, Vout

Vin
. Where the gain is a function of frequency, we

sometimes call it the transfer function.

2We don’t have the mathematical tools to derive our expressions for impedance more rigorously. The “proper” way to do it
involves the Fourier transform (an extension of the Fourier series) and complex exponentials (ejx), and requires us to introduce
a notion of “negative frequency”.

3To get the precise answer, you would need to find the magnitude of a complex number. You’re welcome to do this if you
like; we’ll accept either answer in homework and exams.
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Examples

Example 1. Consider the circuit below, where vin(t) is a sinusoid with frequency f and amplitude Vin.

vin(t)

R

C

+

−

vout(t)

(a) Find an expression for Vout, the amplitude of vout(t), in terms of Vin and f .

(b) If vin(t) is a 1 kHz sinusoid with amplitude 300 mV, and R = 10 kΩ and C = 100 nF, what is the
amplitude of vout(t)?

Example 2. Consider the circuit below, where vin(t) is a sinusoid with frequency f and amplitude Vin.

vin(t)

R

L

+

−

vout(t)

(a) Find an expression for Vout, the amplitude of vout(t), in terms of Vin and f .

(b) If vin(t) is a 700 Hz sinusoid with amplitude 1 V, and R = 100 Ω and L = 400µH, what is the amplitude
of vout(t)?

Example 3. Consider the circuit from Example 1 (again).

vin(t)

10 kΩ

100 nF

+

−

vout(t)

(a) Find the gain Vout

Vin
of the circuit, as a function of frequency.

(b) What is the gain at (i) DC, and (ii) very high frequencies? Interpret this by describing what you would
expect to see at vout(t).

(c) The time-domain and frequency-domain representations of an input vin(t) is shown below. Find the
frequency-domain representation of the output vout(t).
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Example 4. Consider the circuit from Example 2 (again).

vin(t)

100 Ω

400 µH

+

−

vout(t)

(a) Find the gain Vout

Vin
of the circuit, as a function of frequency.

(b) What is the gain at (i) DC, and (ii) very high frequencies? Interpret this by describing what you would
expect to see at vout(t).

(c) The frequency-domain representation of an input vin(t) is shown below. Find the frequency-domain
representation of the output vout(t), then (roughly) sketch its time-domain representation.

1 kHz 1 MHz

1

2

f

Vin

Frequency-domain representation of vin(t)
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