
Input/output pins on the Arduino

ENGR 40M
Chuan-Zheng Lee

April 28, 2017

An input/output pin, or I/O pin, is the interface between a microcontroller and another circuit.
It can be configured in the microcontroller’s software to be either an input or an output. On the
Arduino, this configuration is accomplished using the pinMode() function.

This handout concerns three functions: pinMode(), digitalWrite() and digitalRead(). The
details of all of these can be found in the Arduino reference at https://www.arduino.cc/en/

Reference/HomePage. (If you’re reading a printed copy of this document, the links all go there.)

1 Output pins

When configured as an output pin, a pin provides VDD or 0 V to whatever is connected to it (if
anything). When the pin provides VDD, we say that it is in the HIGH state. When the pin provides
0 V, we say that it is in the LOW state. We set the state of an output pin using the digitalWrite()

function.
An output pin achieves this by making a connection to VDD or a connection to ground inter-

nally, inside the microcontroller. This, in turn, is accomplished with transistors whose drains are
connected to the output pin, as shown in Figure 1.

When the output is set to HIGH, the PMOS transistor turns on and provides a connection to
VDD. When the output is set to LOW, the NMOS transistor turns on and provides a connection to
ground.

1.1 Output resistance

If these transistors were ideal, then they would provide a direct connection to VDD or ground,
depending on which output state (HIGH or LOW) was set by software. Of course, these transistors
aren’t ideal; as we understood from our discussion of transistors, they have some (hopefully small)
on resistance. Furthermore, the outputs of microcontrollers are typically designed to power low
loads, so this resistance isn’t negligible.

The resistance thus “seen” by a device connected to a pin is called the output resistance of the
pin. Of course, there is not just one output resistance—it depends on the state of the pin. When
the output is HIGH, it is the resistance to VDD that is relevant (RHIGH in Figure 2); in our model,
this is the on resistance of the PMOS transistor. When the output is LOW, it is the resistance to
ground; in our model, the on resistance of the NMOS transistor.

1

https://www.arduino.cc/en/Reference/pinMode
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/digitalWrite


A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

VDD

pin
Vout(state set by software)

Figure 1: Schematic of an I/O pin when configured as an output

A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

VDD

RHIGH

A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

VDD

RLOW

Figure 2: Equivalent circuits showing the output resistance when the output is high (left) and low
(right)

2



A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

on

off

VDD

pin
HIGH

Ω

Figure 3: Measuring the output resistance of a pin when it is set to HIGH

1.2 Measuring the output resistance

Say we wished to measure the resistance of an output pin when it is set to HIGH. First, we would
need to set the output pin to high, using the pinMode() and digitalWrite functions. Then, we
can measure the resistance with an ohmmeter, as shown in Figure 3.

Recall, however, that what we’re measuring isn’t a resistor, but a transistor that is on. Therefore,
it is polarized, and unlike with a resistor, the polarity of the leads matters. The ohmmeter will try
to push a test current from the red lead to the black lead, so we should place our leads so that this
test current goes in the expected direction. When measuring the resistance of a PMOS transistor,
this means putting the red lead at the source (VDD), and the black lead at the drain (the pin).
Similarly, when measuring the resistance of the NMOS transistor, the red lead should be at the
drain (pin), and the black lead at the source (ground).

For devices like LEDs, this output resistance isn’t too much of an issue: we don’t wish to
draw that much current from the pin anyway. For motors, however, this output resistance is
prohibitively high, and we need to place a driver circuit in between the output pin and the motor,
so that the motor can draw enough current. Such a driver circuit often uses power transistors,
transistors that are designed to provide higher current (lower drain-source resistance) than those
in the microcontroller.

2 Input pins

An input pin reads the voltage on the pin as if it were a voltmeter, and returns either HIGH (1) in
software if the voltage is close to VDD, or LOW (0) if it is close to 0 V. An input pin can be read
using the digitalRead() function.

3

https://www.arduino.cc/en/Reference/digitalRead


A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

VDD

to input register
pin Vin

Figure 4: A switch circuit that does not work

Note that the value returned by digitalRead() is only well-defined when the input pin voltage
is close to VDD or 0 V. The precise meaning of “close” varies between microcontrollers, but for the
Adafruit Metro Mini1 as it’s used in our circuit, the input pin voltage needs to be at least 0.6VDD

to qualify as HIGH, and at most 0.3VDD to qualify as LOW. In the middle (say, at 0.45VDD), the
behavior of the pin is undefined.

An (ideal) input pin takes (approximately) no current, like the gate of a transistor or a voltmeter.
In the projects we do in this class, modeling the input pin as ideal is a good approximation.2

2.1 Connecting a switch to an input pin (pull-up resistors)

How do we connect a switch to an Arduino? This is not as obvious as it sounds: remember that
switches govern connections, not voltages. So simply connecting the switch between the pin and
some other point in the circuit, say, ground, would not work (Figure 4). When the switch is closed,
the input pin would be shorted to ground, and Vin would be 0 V, which is fine. However, when the
switch is open, the input pin is floating, and we have no idea what its voltage is. (In practice, it
will “remember” the last voltage it was driven to, which in this case is 0 V.)

Consider, instead, the circuit shown in Figure 5. When the switch is closed, the pin is still
shorted to ground, so Vin = 0 V. However, this time, when the switch is open, no current flows
through the resistor Rpu (there’s nowhere for it to go, since the input pin takes no current), so the
voltage drop across the resistor is zero, so Vin = VDD. Thus, we can reliably distinguish between
the closed and open states of the switch: when the switch is closed, the input pin will read LOW,

1More precisely, it’s the ATmega328, which is the microcontroller used in the
Adafruit Metro Mini. The full datasheet can be found at http://www.atmel.com/images/

Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_

Complete.pdf; this information is on page 313.
2The input leakage current is specified in the datasheet to be at most 1µA.

4

http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf


A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

VDD

to input register
pin Vin

VDD

Rpu

Figure 5: Using an external pull-up resistor

and when the switch is open, it will read HIGH.
You can think of the role of the resistor as being to enforce a “default” state on the pin. When

we directly connect the pin to ground, Vin is set to 0 V by that connection—the resistor won’t get in
the way (current will flow through it, but that doesn’t affect the input pin voltage). In the absence
of such a connection, though, the resistor comes into play, pulling up the voltage Vin to VDD. For
this reason, the resistor Rpu is often referred to as a pull-up resistor.

We could also do this the other way round, connecting the switch between VDD and the pin,
and the resistor between the pin and ground, so that would be a “pull-down resistor”. However,
connecting the switch to ground and the resistor to VDD tends to be the more common practice.
It’s so common, in fact, that many microcontrollers (including the Adafruit Metro Mini) implement
a pull-up resistor internally, inside the microcontroller, as shown in Figure 6. The pull-up resistor
can be enabled or disabled in software. To enable it, we pass the INPUT PULLUP constant as the
second argument to pinMode(): pinMode(pin, INPUT PULLUP). To disable it, we pass the constant
INPUT instead: pinMode(pin, INPUT).

The enabling/disabling of the internal pull-up resistor is implemented using—you guessed it—
a PMOS transistor, connected to VDD. When the transistor is off, it looks like an open circuit,
effectively removing the pull-up resistor from the circuit.

If you use the internal pull-up resistor, you naturally don’t need the external one. This makes it
acceptable to connect your switch as in Figure 4, so long as you enable the pull-up resistor, making
the equivalent circuit in Figure 7.

Finally, a couple of cautionary notes. First, we haven’t yet talked about the value of the
resistance Rpu. This is partly because it doesn’t really matter—for any reasonable resistor value,
this circuit will function as we described; the precise resistance only affects how much current flows
when the switch is closed. But there is another aspect to this: the internal pull-up resistor isn’t
specified to have a precise value. Typically, it’s on the order of tens of kiloohms; for the Adafruit
Metro Mini, it’s specified to be between 20 kΩ and 50 kΩ. So you shouldn’t use the internal pull-up
resistor if you need a precisely-known resistance.

5



A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

Rpu

VDD

pullup
enable

to input register

Figure 6: Internal pull-up resistor schematic

Secondly, the pull-up resistor obviously creates a path to VDD, which can sometimes make
a pin you intended to be an output pin seem like it’s working even when you forgot to include
pinMode(pin, OUTPUT) in your setup() function. This is because, in a slight quirk of the Arduino,
when a pin is configured as an input pin, the digitalWrite() function actually enables (HIGH)
or disables (LOW) the pull-up resistor. (That is, pinMode(pin, INPUT PULLUP) is actually just
shorthand for pinMode(pin, INPUT); digitalWrite(pin, HIGH).)

So if you forget to configure a pin to output, you’re actually just enabling and disabling the
pull-up resistor. For a multitude of reasons this is a bad idea: First, as discussed above, the pull-up
resistor does not have a precisely-defined resistance. Also, when the pull-up resistor is disabled, the
pin is floating—which is acceptable for an LED, but if you’re using this pin to drive the gate of a
power transistor, it will mean you have a floating gate. For this reason, it’s important always to
remember to configure the pinMode() of all pins that you’re using in your code.3

3If you don’t configure a pin, it defaults to being an input. However, to make your code easier for others to read,
you should explicitly configure your input pins, too.

6



A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

VDD

to input register
pin Vin

Rpu

Figure 7: Using an internal pull-up resistor

A
rd

u
in
o
m
ic
ro

c
o
n
tr
o
ll
e
r

VDD

to input register
pin

Rpu

Figure 8: When you forget to pinMode(pin, OUTPUT) (bad, don’t do this)

7


	Output pins
	Output resistance
	Measuring the output resistance

	Input pins
	Connecting a switch to an input pin (pull-up resistors)


