E40M

An Introduction to Making: What is EE?

Jim Plummer
Stanford University
plummer@stanford.edu

Chuan-Zheng Lee
Stanford University
czlee@stanford.edu

Roger Howe
Stanford University
rthowe@stanford.edu

Franky Romero

Stanford University

faromero@stanford.edu

What is Electrical Engineering?

- Electrical Engineering is built on a foundation of science and math.
- Physics used to be the primary science but today biology and even some chemistry are becoming important.
- EEs are primarily problem driven "system integrators". Hardware and software, experiment and theory, modeling and simulation are used to devise solutions to important problems.
- EEs are responsible for many of the products we all take for granted.

Outline of Course

This course introduces many of the foundational ideas of EE, but does so in a hands-on, hopefully fun and interesting way.

EE concepts are introduced in the context of 4 lab projects:

Solar USB charger

Useless box

LED cube

• EKG : ECG

"/WTERFACE" -> ARDUINO.

Solar USB Charger (1 week)

Concepts:

- Voltage
- Current
- Power
- KCL, KVL
- Energy conservation

Devices

- Diodes
- Voltage source/battery
- Resistors
- Soldering iron
- DMM

A solar panel charges a battery which provides power to charge a cell phone. But the cell phone requires 5V to charge and the battery only provides 3.7V, so we'll also need a voltage converter circuit.

Useless Box (2 weeks)

Concepts

- Finite State Machines
- Digital Logic
- Binary numbers
- CMOS Gates
- Programming
- Devices
 - Motors
 - Switches
 - nMOS
 - pMOS

In this lab you'll assemble a "useless box" like the one featured in Make Magazine & on YouTube. When the switch on the box is flipped "on", a finger comes out of the box and turns the switch "off".

LED Cube (3 weeks)

- Concepts
 - Coding
 - Light
 - Sound
 - Transforms/equalizers
- Devices
 - LEDs
 - Audio jacks
 - Analog to digital converters

An LED cube is a 3D shape made entirely of light emitting diodes. The LED cube is wired to a computer (Arduino) which controls individual LEDs to display interesting patterns.

ECG (1 week)

- Concepts
 - Amplifiers
 - Impedance
 - Noise
 - Safety
 - Filters
- Components
 - Capacitors
 - Inductors
 - Instrumentation and Operational Amplifiers

In this project we will build an electrocardiagram (ECG or EKG). This is a noninvasive device that measures the electrical activity of the heart using electrodes placed on the skin.

Class Logistics - Workload

- We think that you will get out of a class what you put into it
 - And we want you to get a lot out of this class
- So if you are looking for an easy class to satisfy GER
 - Take another class!
- But in return for your time you will learn valuable skills
 - For both work and play
 - And you will build toys you get to keep
- And we will try to make the class fun!
 - So (we hope) the time you spend on it just flies by
 - If it is not fun, please let us know!

Class Requirements

- Attend lecture and do the prelabs!
 - We will work on some of the prelabs/homework in class
 - Generally M/W lectures will cover EE basics needed for the lab projects. Friday lectures will be specific skills/information associated with following week's lab.
- Do the lab project each week
 - You will sign up for a 3 hour lab slot
 - Work in 2 person teams partners will change w/ projects
- Homework each week reviews key concepts
 - Not meant to be time intensive, checking you get key points

MAY 10 JUNE 9 (EVENING)

There will be a midterm and final

Grading

- 50% Lab assignments
 - 25% Function
 - 25% Style
 - How clean is your physical design?
 - Did you follow good lab techniques
 - Clean construction will also make your designs easier to debug
 - How easy is it for us to understand your code?
 - Or, how easy will it be for you to understand your code in 3 months
- 40% Exams
 - Midterm, Final equally weighted
- 10% Homework

Lecture Logistics

- Class is scheduled MWF 3 pm 4:20 pm in 420-040.
- Class will generally be about 1 hour with extra time for in-class "office hours".
- Mon/Wed lectures will cover EE basics needed to understand and do the labs. HW and exams will be based on this material.
- Fri lectures will be "Prelabs" designed to cover material needed to do the lab project the following week.

Lab Logistics

- Class will be divided into groups of 8 10 people
 - Each group will have a "master maker," a.k.a. CA, SL
 - That person will help you throughout the quarter
 - Projects will be done in teams of 2 people
 - You will partner with ½ the people in your group
- Lab is located in Packard 130, 131
 - It is the first floor near Bytes Café
 - You will have an assigned time
 - But you can come to the lab at other times to finish up projects, if there's a free bench. Monday will have no scheduled lab sections, but the lab will be open for much of the day.

Class Website

- We will post all class materials, announcements, HW, grades etc. on the class website. http://web.stanford.edu/class/engr40m/
- Lectures will be recorded and posted on Box after class https://stanford.box.com/s/3ry4kewsut73ip32p2ekjwp7kj3be80y. In class "office hours" will generally not be recorded.
- We will not bring hardcopies of class materials to class. Please print or download these before class.
- We will use Piazza https://piazza.com/class/j0o7rvp9g8d4gs for questions. Please post all questions about class concepts, HW clarifications etc. so the TAs and instructors can provide answers that everyone can benefit from.
- For personal questions, please email TAs or instructors directly.

The Textbook

- There is a class reader for this class, and most of the lecture topics are discussed there, on the class website.
- In addition there is a reference text: A. Agarwal and J. Lang, Foundations of Analog and Digital Electronic Circuits, Morgan and Kaufmann, 2005.
- The textbook is generally more mathematically rigorous than the lectures, the homework, the labs, or the exams, and is available on-line.
- Coding in general and Arduino coding in particular are not covered in the textbook, but will be covered in the labs and Friday lectures.

Important!

- Debugging is hard
 - By definition things are not working they way they should
 - Or at least the way you think they should

You need to find the error

- Could be in your understanding of the problem
- Could be what you built is not what you think you built
- Could be that the part/board is broken
- Don't let it get to you
 - It is frustrating for everyone
 - Ask for help, fresh eyes are great
 - That is what the Master Makers are for

Clipart from Cliparts.co

Rough Outline of the Class

- Weeks 1 2
 - Voltage, current, power; Batteries, DMM
 - Introduction to "EE Making": Learning to solder
- Week 3
 - How to reason about circuits
 - Lab 1: Building a solar charger
- Week 4
 - Breadboards, MOS transistors, digital logic
 - Lab 2a: Building a useless box; switches, motors
- Week 5
 - Learning how simple computers work; coding; light and sound
 - Lab 2b: Building a computerized useless box; Intro to Arduino

Outline (cont'd)

- Week 6
 - Capacitors; Midterm
 - Lab 3a: Building an LED display
- Week 7
 - A new way to think about circuits: impedance
 - Lab 3b: Controlling your LED display
- Week 8
 - Electronic filters; Op-amps
 - Lab 3c: Tricking out your LED display
- Week 9
 - Instrumentation Amps, bio signals and safety; inductors
 - Lab 4: Measuring your ECG
- Week 10: review and final exam (June 9, 3:30-6:30)