E40M

Binary Numbers, Codes

Reading

- Chapter 5 in the reader
- A\&L 5.6

Useless Box Lab Project \#2

Adding a computer to the Useless Box alows us to write a program to control the motor (and hence the box).

- To control the motor we need to study and use MOS transistors since our computer cannot drive the motor directly.
- The computer (Arduino) uses Boolean logic and CMOS logic gates to implement software we write for it. The MOS transistors amplify the Arduino output to control the motor.

Last Lecture: MOSFETs

$-\mathrm{nMOS}$

- It is a switch which connects source to drain
- If the gate-to-source voltage is greater than $\mathrm{V}_{\text {th }}$ (around 1 V)
- Positive gate-to-source voltages turn the device on.
- pMOS
- It is a switch which connects source to drain
- If the gate-to-source voltage is less than $\mathrm{V}_{\text {th }}$ (around -1 V)
- Negative gate-to-source voltages turn the device on
... and there's zero current into the gate!

Last Lecture: MOSFET models

- Are very interesting devices
- Come in two "flavors" - pMOS and nMOS
- Symbols and equivalent circuits shown below
- Gate terminal takes no current (at least no DC current)
- The gate voltage" controls whether the "switch" is ON or OFF

[^0]
Last Lecture: Logic Gates

Logic Gates Deal With Binary Signals

- Wires can have only two values
- Binary values, 0,1; or True and False
- Generally transmitted as:
$-\mathrm{Vdd}=1 \mathrm{~V}$; Gnd $=0$
- Vdd is the power supply, 1 V to 5 V
- Gnd is the "reference" level, about OV
- So how do we represent:
- Numbers, letters, colors, etc.?

A	B
0	0
AND	
0	1
1	0
1	1

(A \&\& B) <-> AND

Logic Gates Deal With Binary Signals

- Wires can have only two values
- Binary values, 0,1; or True and False
- Generally transmitted as:
$-\mathrm{Vdd}=1$; Gnd $=0$
- Vdd is the power supply, 1 V to 5 V
- Gnd is the "reference" level, about $0 V$
- So how do we represent:
- Numbers, letters, colors, etc.?

A	B	OR
0	0	0
0	1	1
1	0	1
1	1	1

$(A|\mid B)<->O R$

Binary Numbers

- To represent anything other than true and false
- You are going to need more then one bit
- Group bits together to form more complex objects
- 8 bits are a byte, and can represent a character (ASCII)
- 24 bits are grouped together to represent color
- 8 bits for R, G, B.
- 16 or 32 or 64 bits are grouped together and can represent an integer

Binary Numbers

- For decimal numbers
- Each place is 10^{n}
- 1, 10, 100, 1000 ...
- Since there are 10 possible values of digits

10^{2}	10^{1}	10^{0}
1	4	5

Decimal $=145$

- For binary numbers
- Each digit is only 0,1 (only two possible digits)
- The place values are then 2^{n}
- $1,2,4,8,16, \ldots$
- It is useful to remember that $2^{10}=1024$

$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
1	0	1

$$
\begin{aligned}
\text { Decimal } & =2^{2}+2^{0} \\
& =5
\end{aligned}
$$

Binary Numbers

Operation	Output	Remainder
$23 / 2^{7}$	0	23
$23 / 2^{6}$	0	23
$23 / 2^{5}$	0	23
$23 / 2^{4}$	1	7
$23 / 2^{3}$	0	7
$23 / 2^{2}$	1	3
$23 / 2^{1}$	1	1
$23 / 2^{0}$	1	0

23 in binary is 00010111

Carry		1	1	
11	1	0	1	1
3	0	0	1	1
Addition (14)	1	1	1	0

Add by carrying 1 s

- Subtract by borrowing 2s.
- See class reader

Binary Numbers

- One can think of binary numbers as a kind of code:
- In communications and information processing, code is a system of rules to convert information-such as a letter, word, sound, image, or gesture-into another form or representation, sometimes shortened or secret, for communication through a channel or storage in a medium.
https://en.wikipedia.org/wiki/Code

Many Different Types of Codes

- Figuring out "good" codes is a big part of EE
- Security
- Error correction
- Compression
- .mp3, .mp4, .jpeg, .avi, etc. Are all a code of the source
- .zip
- Whole theory of information (Information theory) guides codes
- Sets what is possible and not possible (Claude Shannon)

Binary Code

- Advantages
- Uses a small number of bits, $\log 2(\mathrm{~N})$, to represent a number
- Easy to generate and decode
- Easy to do math on this representation
- Disadvantages
- The value is in the "clear" (the data is not encrypted)
- If any bit is in error, the number is lost
- If you use more bits, can recover from single bit error
- Can only represent one number per value
- Let's say we would like to drive a display with 64 lights ...

How To Represent Negative Numbers?

- Could create sign / magnitude code
- Add one bit to be the sign bit

7	00000111
-7	10000111

- But that is not what works out best
- To add two numbers, you first need to look at the sign bits
- If they are the same, add
- If they are different, subtract

Two's Complement Numbers

- Positive numbers are normal binary
- Negative numbers are defined so when we add them to |Num|, a normal adder will give zero
- So
- $-1=1111111111111111$
- $-2=1111111111111110$

Carry	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Generating Two's Complement Numbers

- Take your number
- Invert all the bits of the number
- Make all " 0 " " 1 " and all " 1 " " 0 "
- And then add 1 to the result
- Lets look at an example:

42	0	0	1	0	1	0	1	0
Flip 1 and 0	1	1	0	1	0	1	0	1
Add 1	1	1	0	1	0	1	1	0

- So -42 in two's complement is 11010110

The Way This Works

Figure 7.16: Two's complement circle

Funny Things Happen With Finite Numbers

- Your homework looks at some problems with numbers
- That only have a finite number of bits
- Computers generally have two types of numbers
- Signed numbers, and unsigned numbers
- It interprets the MSB differently
- Can get "interesting" results if you mistake
- A signed number as unsigned and vice versa
- Also overflows have an interesting effect
- Can add two positive numbers and get a negative result!

Overflow Situations

Figure 7.16: Two's complement circle

ERASURE CODES

An Example of Other Types of EE Coding Problems

- You want to send data to someone
- But the communication link is not reliable
- It will sometimes drop packets
- But you will know which packets you got/lost
- Say that the link might lose up to K of N packets
- You have no control of which packets are lost
- Called erasure channels, since it erases information
- How much data can you communicate in N packets?
- How do you code the information to achieve that rate?

At First Life Seems Hard

- We need to communicate all the data reliably
- If we can lose any 3 packets
- Then if we transmit each value 3 times, we still might lose.
- Almost seems like we need to transmit each value 4 times
- Or for K erasures in N packets
- Can transmit < N/K pieces of information
- Can we do better?

Upper Bound

- I don't know how to solve this but I do know one thing
- Impossible to transmit more than N-K packets of information
- Since that is all the bits that you get at the receiver
- How close can we come to this upper bound?
- We can actually achieve it!

Getting Around the Problem

- The problem is we don't know what data will be lost
- To achieve the upper bound what data is lost can't matter
- Any (N-K) code outputs can give us our (N-K) packet values
- For this to be true
- Each packet value must be in at least $\mathrm{K}+1$ code outputs
- But since there are much less than ($\mathrm{K}+1$)(N-K) outputs
- Most code values must contain multiple packet values
- Huh?
- Linear algebra to the rescue!

Simple Example

- Assume we want to transmit 3 values $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$
- And the channel may drop two in 5 packets
- What happens if we transmit:
- X1
- X2;
- X3;
- X1+X2+X3
$-X 1+2^{*} X 2+3 * X 3$
- Can we solve for $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ with any 3 packets?

Linear Algebra Formulation

- To solve for $\mathrm{M}=\mathrm{N}-\mathrm{K}$ variables
- How many linear equations are needed?
- If we create N independent linear combinations of M values
- It doesn't matter which M equations we have
- We have enough information to solve for the variables!
- Generally written in matrix notation
- $\mathrm{Y}=\mathrm{A} \mathrm{X}$, where A is a NxM matrix
- $X=A^{*-1} Y^{*}$, where the * means the values you received

Time Multiplexing

- In the LED cube we will have 64 LEDs but they are wired so we can access rows and columns of the matrix.
- We'll explore a different type of coding later that will allow us to control each LED individually, even though we do not have a separate connection to each of them!

Learning Objectives

- Understand how binary numbers work
- And be able to convert from decimal to binary numbers
- Understand what Electrical Engineers mean by a code
- It is a set of rules to represent information
- How to use two's complement codes
- To represent positive and negative numbers
- And what happens when an overflow occurs
- Understand how erasure codes allow you to recover your message even when some packets are dropped

[^0]: * actually, the gate - to - source voltage, V_{GS}

