E40M

Binary Numbers, Codes
Reading

- Chapter 5 in the reader
- A&L 5.6
Useless Box Lab Project #2

Adding a computer to the Useless Box allows us to write a program to control the motor (and hence the box).

• To control the motor we need to study and use MOS transistors since our computer cannot drive the motor directly.

• The computer (Arduino) uses Boolean logic and CMOS logic gates to implement software we write for it. The MOS transistors amplify the Arduino output to control the motor.
Last Lecture: MOSFETs

- nMOS
 - It is a switch which connects source to drain
 - If the gate-to-source voltage is greater than V_{th} (around 1 V)
 - Positive gate-to-source voltages turn the device on.

- pMOS
 - It is a switch which connects source to drain
 - If the gate-to-source voltage is less than V_{th} (around -1 V)
 - Negative gate-to-source voltages turn the device on

... and there’s zero current into the gate!
Last Lecture: MOSFET models

- Are very interesting devices
 - Come in two “flavors” – pMOS and nMOS
 - Symbols and equivalent circuits shown below

- Gate terminal takes no current (at least no DC current)
 - The gate voltage* controls whether the “switch” is ON or OFF

* actually, the gate – to – source voltage, V_{GS}
Last Lecture: Logic Gates

- NOT Gate
 - Input A
 - Output Out

- AND Gate
 - Inputs A and B
 - Output Out

- NAND Gate
 - Inputs A and B
 - Output Out

- OR Gate
 - Inputs A and B
 - Output Out

- NOR Gate
 - Inputs A and B
 - Output Out

- XOR Gate
 - Inputs A and B
 - Output Out

- Circuit Diagram
 - Inputs VA and VB
 - Output VOut
 - Power Supply VDD
Logic Gates Deal With Binary Signals

• Wires can have only two values
 – Binary values, 0, 1; or True and False

• Generally transmitted as:
 – Vdd = 1 V; Gnd = 0
 • Vdd is the power supply, 1V to 5 V
 • Gnd is the “reference” level, about 0V

• So how do we represent:
 – Numbers, letters, colors, etc. ?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>AND</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(A && B) <-> AND
Logic Gates Deal With Binary Signals

- Wires can have only two values
 - Binary values, 0, 1; or True and False

- Generally transmitted as:
 - $V_{dd} = 1$; $Gnd = 0$
 - V_{dd} is the power supply, 1V to 5V
 - Gnd is the “reference” level, about 0V

- So how do we represent:
 - Numbers, letters, colors, etc.?
Binary Numbers

- To represent anything other than true and false
 - You are going to need more than one bit

- Group bits together to form more complex objects
 - 8 bits are a byte, and can represent a character (ASCII)

- 24 bits are grouped together to represent color
 - 8 bits for R, G, B.

- 16 or 32 or 64 bits are grouped together and can represent an integer
Binary Numbers

- For decimal numbers
 - Each place is 10^n
 - 1, 10, 100, 1000 …
 - Since there are 10 possible values of digits

- For binary numbers
 - Each digit is only 0, 1 (only two possible digits)

- The place values are then 2^n
 - 1, 2, 4, 8, 16, …

- It is useful to remember that $2^{10} = 1024$

<table>
<thead>
<tr>
<th>10^2</th>
<th>10^1</th>
<th>10^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Decimal = 145

<table>
<thead>
<tr>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Decimal = $2^2 + 2^0 = 5$
Binary Numbers

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/2^7</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>23/2^6</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>23/2^5</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>23/2^4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>23/2^3</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>23/2^2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>23/2^1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23/2^0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

23 in binary is 00010111

<table>
<thead>
<tr>
<th>Carry</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Addition (14)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Add by carrying 1s

- Subtract by borrowing 2s.
- See class reader
Binary Numbers

• One can think of binary numbers as a kind of code:
 – In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form or representation, sometimes shortened or secret, for communication through a channel or storage in a medium.

Many Different Types of Codes

• Figuring out “good” codes is a big part of EE

• Security

• Error correction

• Compression
 – .mp3, .mp4, .jpeg, .avi, etc. Are all a code of the source
 – .zip

• Whole theory of information (Information theory) guides codes
 – Sets what is possible and not possible (Claude Shannon)
Binary Code

• Advantages
 – Uses a small number of bits, \(\log_2(N) \), to represent a number
 – Easy to generate and decode
 – Easy to do math on this representation

• Disadvantages
 – The value is in the “clear” (the data is not encrypted)
 – If any bit is in error, the number is lost
 • If you use more bits, can recover from single bit error
 – Can only represent one number per value
 • Let’s say we would like to drive a display with 64 lights …
How To Represent Negative Numbers?

- Could create sign / magnitude code
 - Add one bit to be the sign bit

 | | |
 |---+-------|
 | 7 | 00000111 |
 | -7 | 10000111 |

- But that is *not* what works out best
 - To add two numbers, you first need to look at the sign bits
 - If they are the same, add
 - If they are different, subtract
Two’s Complement Numbers

- Positive numbers are normal binary

- Negative numbers are defined so when we add them to $|\text{Num}|$, a normal adder will give zero
 - So
 - $-1 = 1111111111111111$
 - $-2 = 1111111111111110$

Carry	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
-3	1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
Addition	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Generating Two’s Complement Numbers

• Take your number
 – Invert all the bits of the number
 • Make all “0” “1” and all “1” “0”
 – And then add 1 to the result

• Lets look at an example:

<table>
<thead>
<tr>
<th>42</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip 1 and 0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Add 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

• So -42 in two’s complement is 11010110
The Way This Works

Figure 7.16: Two’s complement circle
Funny Things Happen With Finite Numbers

• Your homework looks at some problems with numbers
 – That only have a finite number of bits

• Computers generally have two types of numbers
 – Signed numbers, and unsigned numbers
 • It interprets the MSB differently
 – Can get “interesting” results if you mistake
 • A signed number as unsigned and vice versa

• Also overflows have an interesting effect
 – Can add two positive numbers and get a negative result!
Overflow Situations

Figure 7.16: Two’s complement circle
ERASURE CODES
An Example of Other Types of EE Coding Problems

• You want to send data to someone
 – But the communication link is not reliable
 • It will sometimes drop packets
 • But you will know which packets you got/lost
 – Say that the link might lose up to K of N packets
 • You have no control of which packets are lost
 – Called erasure channels, since it erases information

• How much data can you communicate in N packets?
 – How do you code the information to achieve that rate?
At First Life Seems Hard

• We need to communicate all the data reliably
 – If we can lose any 3 packets
 – Then if we transmit each value 3 times, we still might lose.

• Almost seems like we need to transmit each value 4 times

• Or for K erasures in N packets
 – Can transmit $< \frac{N}{K}$ pieces of information

• Can we do better?
Upper Bound

• I don’t know how to solve this but I do know one thing

• Impossible to transmit more than N-K packets of information
 – Since that is all the bits that you get at the receiver

• How close can we come to this upper bound?
 – We can actually achieve it!
Getting Around the Problem

- The problem is we don’t know what data will be lost
 - To achieve the upper bound what data is lost can’t matter
 - Any \((N-K)\) code outputs can give us our \((N-K)\) packet values

- For this to be true
 - Each packet value must be in at least \(K+1\) code outputs
 - But since there are much less than \((K+1)(N-K)\) outputs
 - Most code values must contain multiple packet values
 - Huh?

- Linear algebra to the rescue!
Simple Example

- Assume we want to transmit 3 values X_1, X_2, X_3
 - And the channel may drop two in 5 packets

- What happens if we transmit:
 - X_1
 - X_2
 - X_3
 - $X_1 + X_2 + X_3$
 - $X_1 + 2X_2 + 3X_3$

- Can we solve for X_1, X_2, X_3 with any 3 packets?
Linear Algebra Formulation

• To solve for $M = N - K$ variables
 – How many linear equations are needed?

• If we create N independent linear combinations of M values
 – It doesn’t matter which M equations we have
 • We have enough information to solve for the variables!

• Generally written in matrix notation
 – $Y = A \times X$, where A is a $N \times M$ matrix
 • $X = A^{-1} Y^*$, where the * means the values you received
Time Multiplexing

• In the LED cube we will have 64 LEDs but they are wired so we can access rows and columns of the matrix.

• We’ll explore a different type of coding later that will allow us to control each LED individually, even though we do not have a separate connection to each of them!
Learning Objectives

• Understand how binary numbers work
 – And be able to convert from decimal to binary numbers

• Understand what Electrical Engineers mean by a code
 – It is a set of rules to represent information
 – How to use two’s complement codes
 • To represent positive and negative numbers
 • And what happens when an overflow occurs

• Understand how erasure codes allow you to recover your message even when some packets are dropped