
E40M

Binary Numbers, Codes

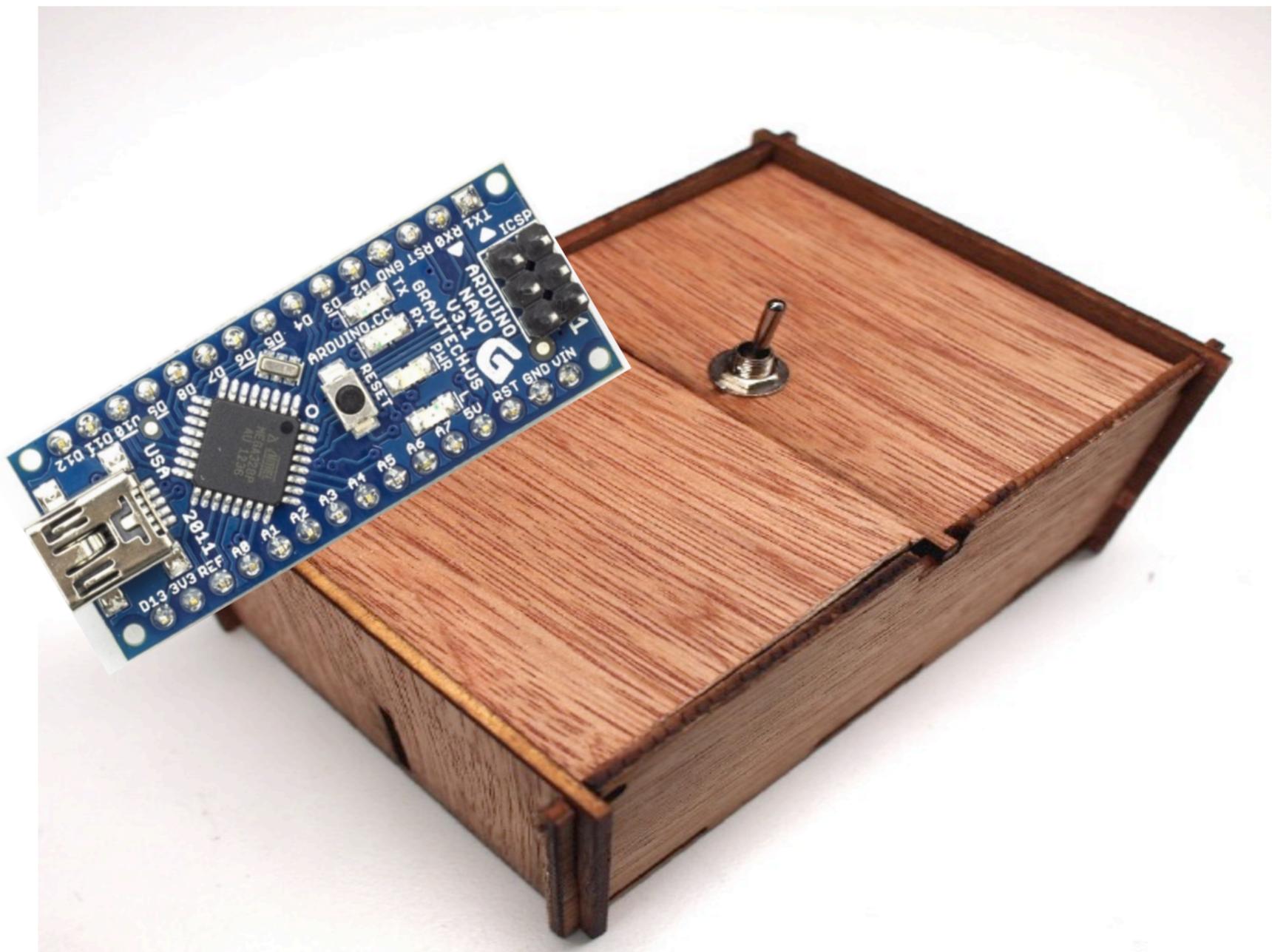
Reading

- Chapter 5 in the reader
- A&L 5.6

Useless Box Lab Project #2

Adding a computer to the Useless Box allows us to write a program to control the motor (and hence the box).

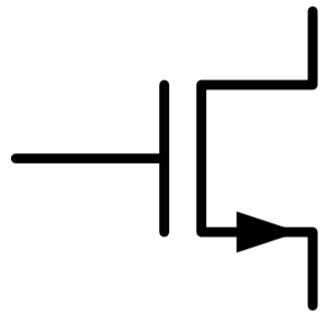
- To control the motor we need to study and use MOS transistors since our computer cannot drive the motor directly.
- The computer (Arduino) uses Boolean logic and CMOS logic gates to implement software we write for it. The MOS transistors amplify the Arduino output to control the motor.



Last Lecture: MOSFETs

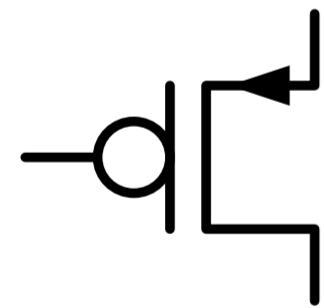
- nMOS

- It is a switch which connects source to drain
- If the gate-to-source voltage is greater than V_{th} (around 1 V)
 - Positive gate-to-source voltages turn the device on.



- pMOS

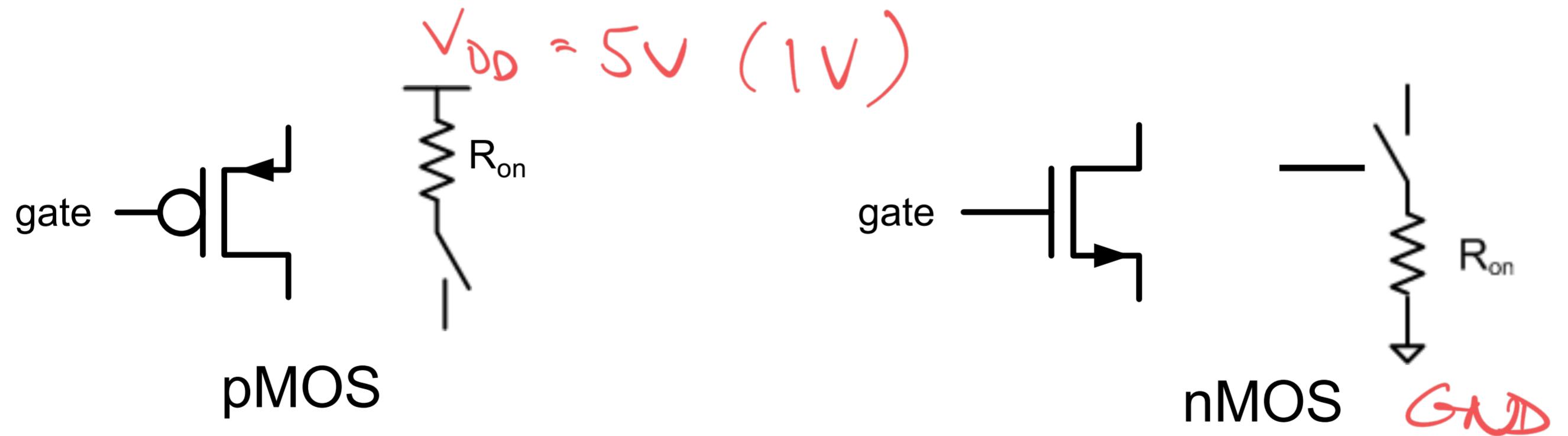
- It is a switch which connects source to drain
- If the gate-to-source voltage is less than V_{th} (around -1 V)
 - Negative gate-to-source voltages turn the device on



... and there's zero current into the gate!

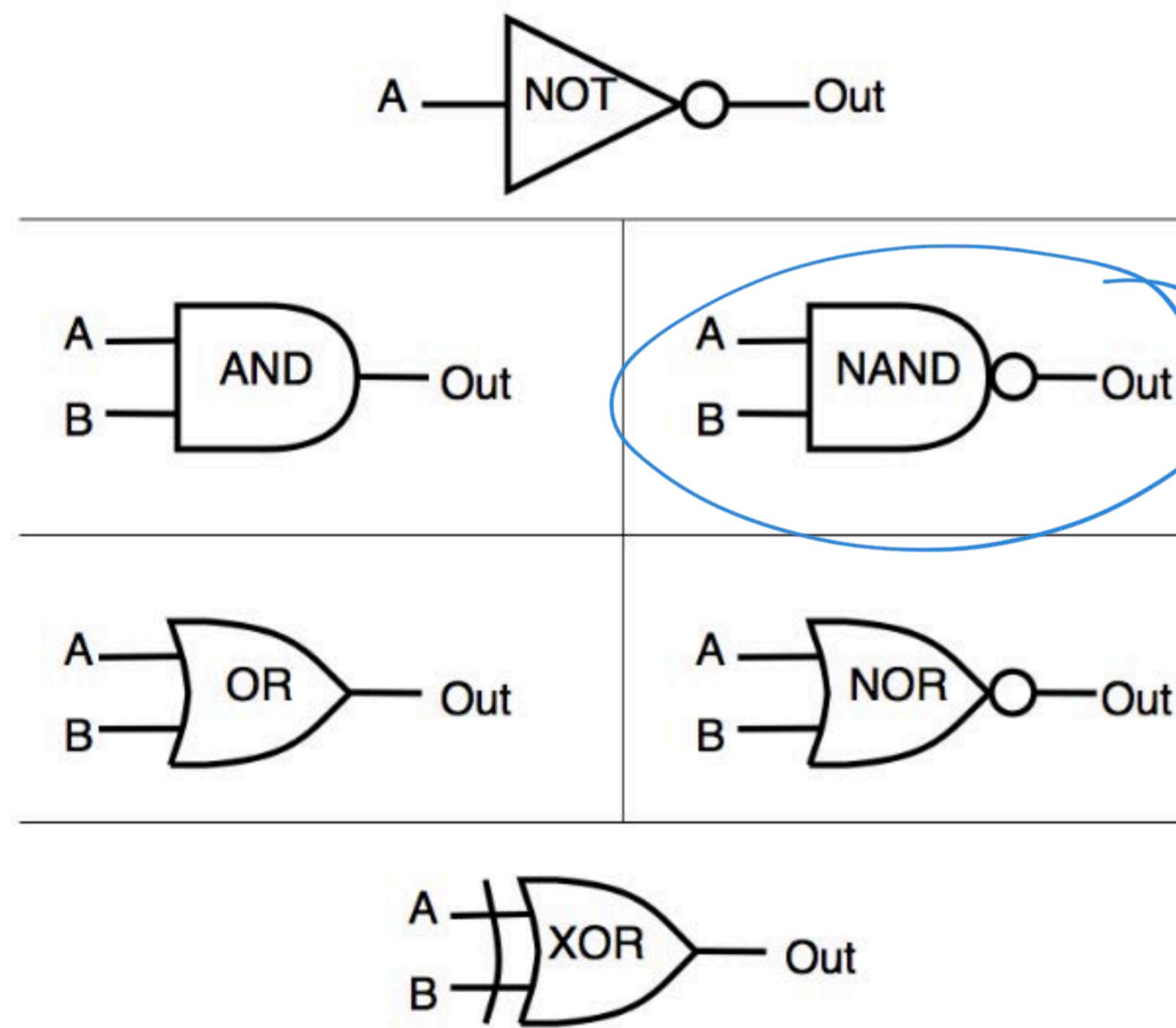
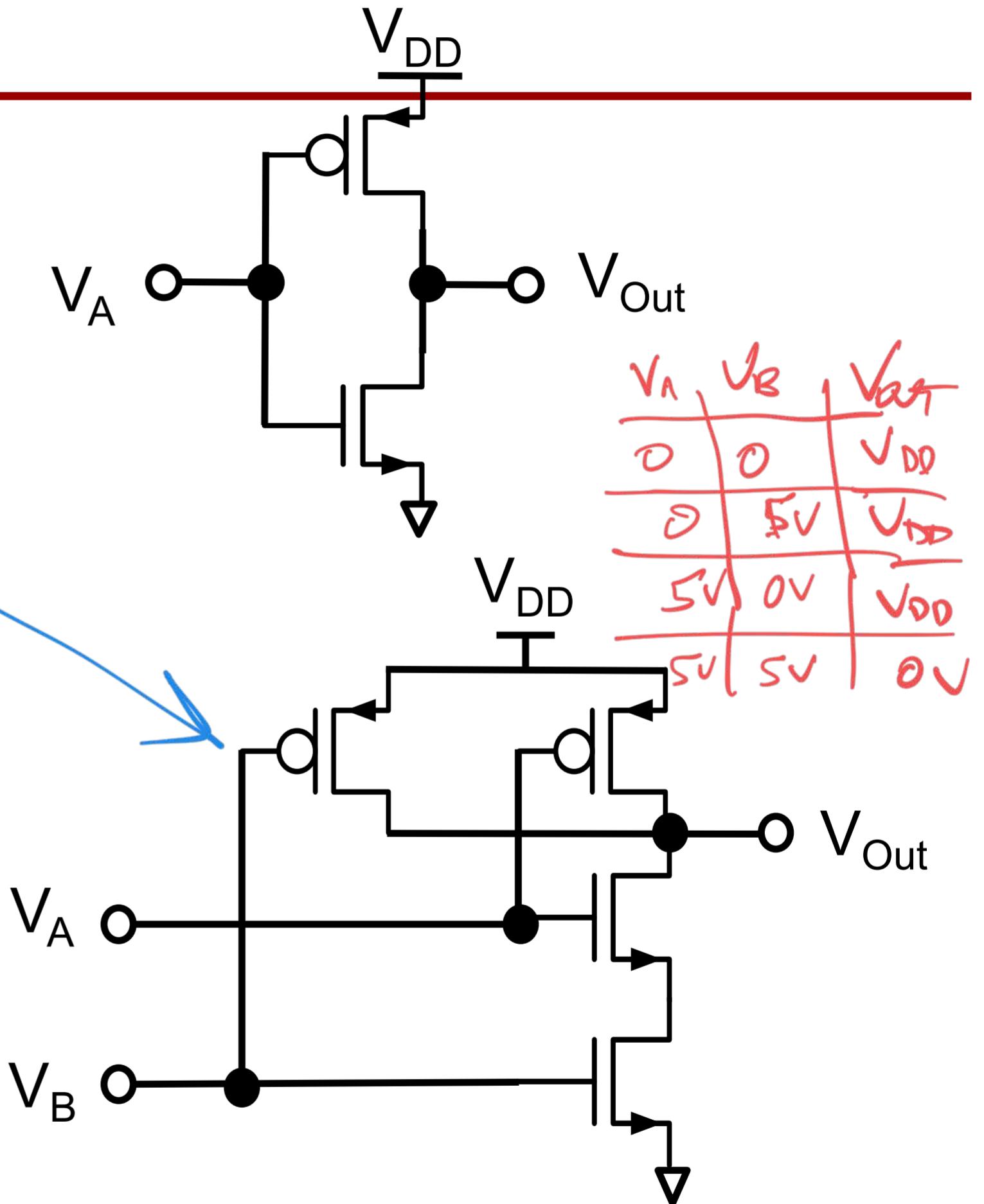
Last Lecture: MOSFET models

- Are very interesting devices
 - Come in two “flavors” – pMOS and nMOS
 - Symbols and equivalent circuits shown below
- Gate terminal takes no current (at least no DC current)
 - The gate voltage* controls whether the “switch” is ON or OFF



* actually, the gate – to – source voltage, V_{GS}

Last Lecture: Logic Gates



Logic Gates Deal With Binary Signals

- Wires can have only two values
 - Binary values, 0, 1; or True and False
- Generally transmitted as:
 - $V_{dd} = 1 \text{ V}$; $Gnd = 0$
 - V_{dd} is the power supply, 1V to 5 V
 - Gnd is the “reference” level, about 0V
- So how do we represent:
 - Numbers, letters, colors, etc. ?

A	B	AND
0	0	0
0	1	0
1	0	0
1	1	1

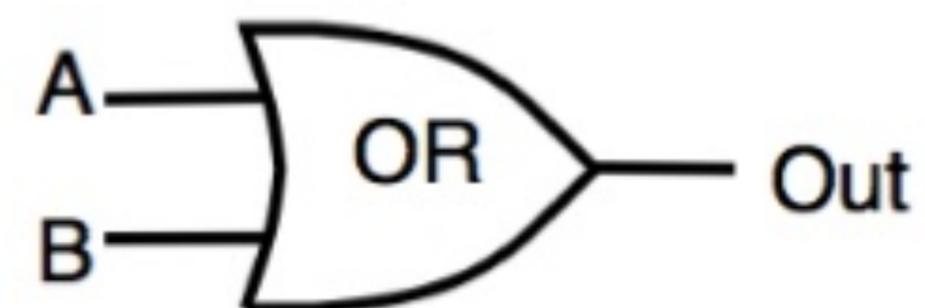
$(A \& B) \leftrightarrow \text{AND}$

Logic Gates Deal With Binary Signals

- Wires can have only two values
 - Binary values, 0, 1; or True and False
- Generally transmitted as:
 - $V_{dd} = 1$; $Gnd = 0$
 - V_{dd} is the power supply, 1V to 5 V
 - Gnd is the “reference” level, about 0V
- So how do we represent:
 - Numbers, letters, colors, etc. ?

A	B	OR
0	0	0
0	1	1
1	0	1
1	1	1

$$(A \parallel B) \leftrightarrow \text{OR}$$



Binary Numbers

- To represent anything other than true and false
 - You are going to need more than one bit
- Group bits together to form more complex objects
 - 8 bits are a byte, and can represent a character (ASCII)
- 24 bits are grouped together to represent color
 - 8 bits for R, G, B.
- 16 or 32 or 64 bits are grouped together and can represent an integer

Binary Numbers

- For decimal numbers
 - Each place is 10^n
 - 1, 10, 100, 1000 ...
 - Since there are 10 possible values of digits

10^2	10^1	10^0
1	4	5

$$\text{Decimal} = 145$$

- For binary numbers
 - Each digit is only 0, 1 (only two possible digits)

2^2	2^1	2^0
1	0	1

- The place values are then 2^n
 - 1, 2, 4, 8, 16, ...

$$\begin{aligned}\text{Decimal} &= 2^2 + 2^0 \\ &= 5\end{aligned}$$

- It is useful to remember that $2^{10} = 1024$

Binary Numbers

Operation	Output	Remainder
$23/2^7$	0	23
$23/2^6$	0	23
$23/2^5$	0	23
$23/2^4$	1	7
$23/2^3$	0	7
$23/2^2$	1	3
$23/2^1$	1	1
$23/2^0$	1	0

23 in binary is 00010111

Carry		1	1	
11	1	0	1	1
3	0	0	1	1
Addition (14)	1	1	1	0

Add by carrying 1s

- Subtract by borrowing 2s.
- See class reader

Binary Numbers

- One can think of binary numbers as a kind of **code**:
 - In communications and information processing, **code** is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form or representation, sometimes shortened or secret, for communication through a channel or storage in a medium.

<https://en.wikipedia.org/wiki/Code>

Many Different Types of Codes

- Figuring out “good” codes is a big part of EE
- Security
- Error correction
- Compression
 - .mp3, .mp4, .jpeg, .avi, etc. Are all a code of the source
 - .zip
- Whole theory of information (Information theory) guides codes
 - Sets what is possible and not possible (Claude Shannon)

Binary Code

- Advantages
 - Uses a small number of bits, $\log_2(N)$, to represent a number
 - Easy to generate and decode
 - Easy to do math on this representation
- Disadvantages
 - The value is in the “clear” (the data is not encrypted)
 - If any bit is in error, the number is lost
 - If you use more bits, can recover from single bit error
 - Can only represent one number per value
 - Let’s say we would like to drive a display with 64 lights ...

How To Represent Negative Numbers?

- Could create sign / magnitude code
 - Add one bit to be the sign bit

7	00000111
-7	10000111

- But that is ***not*** what works out best
 - To add two numbers, you first need to look at the sign bits
 - If they are the same, add
 - If they are different, subtract

Two's Complement Numbers

- Positive numbers are normal binary
- Negative numbers are defined so when we add them to $|Num|$, a normal adder will give zero
 - So
 - $-1 = 1111111111111111$
 - $-2 = 1111111111111110$

Generating Two's Complement Numbers

- Take your number
 - Invert all the bits of the number
 - Make all “0” “1” and all “1” “0”
 - And then add 1 to the result
- Lets look at an example:

42	0	0	1	0	1	0	1	0
Flip 1 and 0	1	1	0	1	0	1	0	1
Add 1	1	1	0	1	0	1	1	0

- So -42 in two's complement is 11010110

The Way This Works

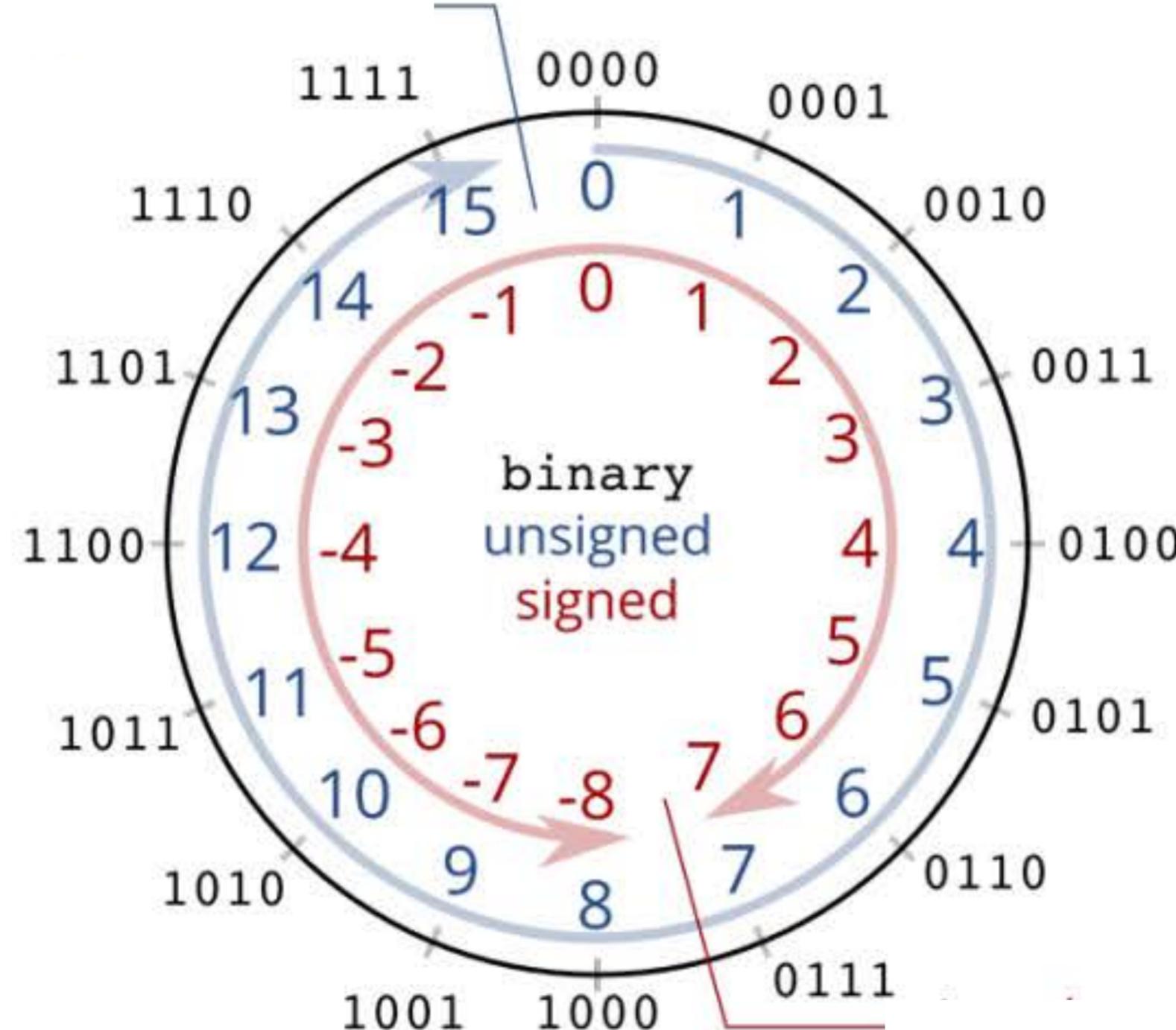


Figure 7.16: Two's complement circle

Funny Things Happen With Finite Numbers

- Your homework looks at some problems with numbers
 - That only have a finite number of bits
- Computers generally have two types of numbers
 - Signed numbers, and unsigned numbers
 - It interprets the MSB differently
 - Can get “interesting” results if you mistake
 - A signed number as unsigned and vice versa
- Also overflows have an interesting effect
 - Can add two positive numbers and get a negative result!

Overflow Situations

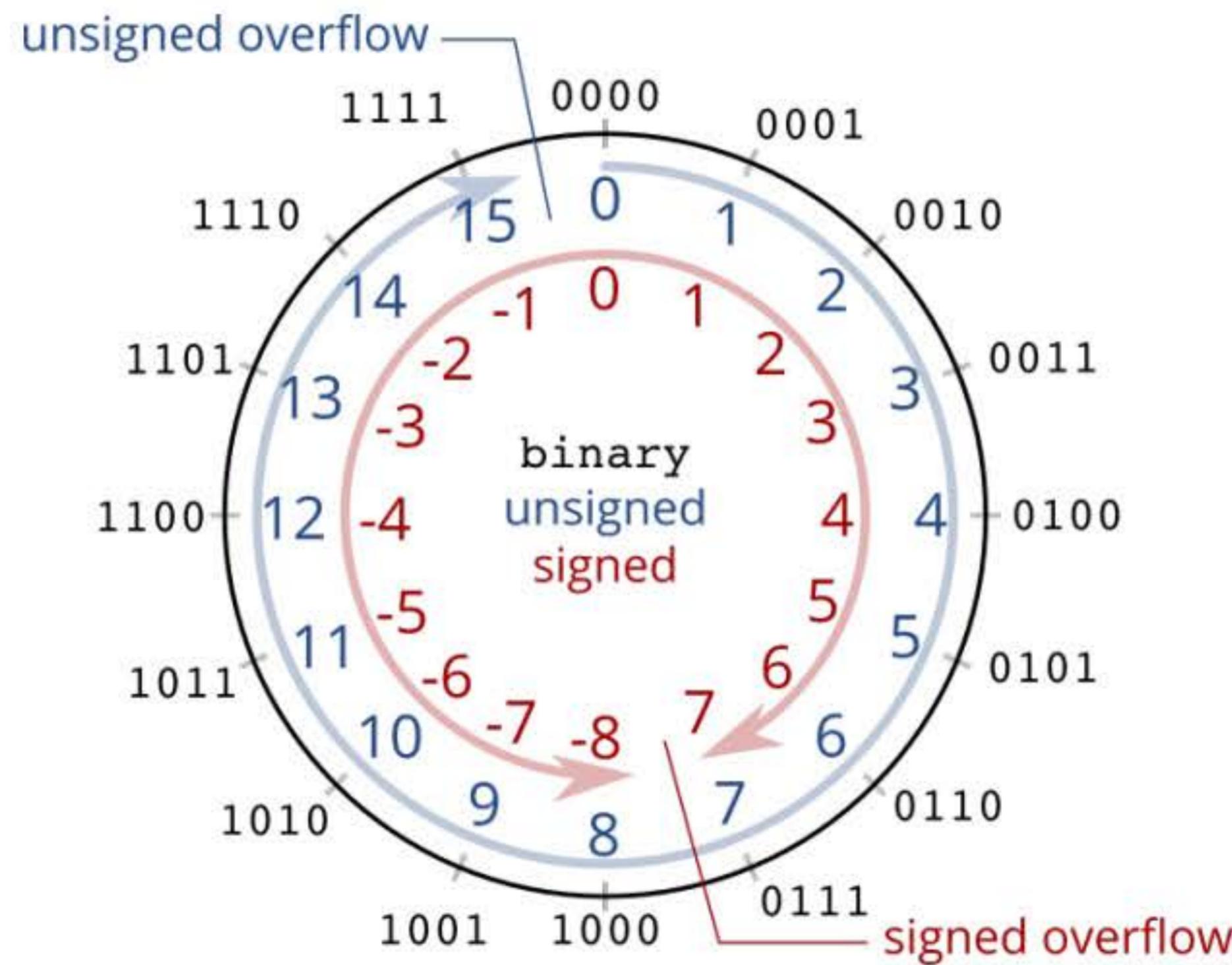


Figure 7.16: Two's complement circle

ERASURE CODES

An Example of Other Types of EE Coding Problems

- You want to send data to someone
 - But the communication link is not reliable
 - It will sometimes drop packets
 - But you will know which packets you got/lost
 - Say that the link might lose up to K of N packets
 - You have no control of which packets are lost
 - Called erasure channels, since it erases information
- How much data can you communicate in N packets?
 - How do you code the information to achieve that rate?

At First Life Seems Hard

- We need to communicate all the data reliably
 - If we can lose any 3 packets
 - Then if we transmit each value 3 times, we still might lose.
- Almost seems like we need to transmit each value 4 times
- Or for K erasures in N packets
 - Can transmit $< N/K$ pieces of information
- Can we do better?

Upper Bound

- I don't know how to solve this but I do know one thing
- Impossible to transmit more than $N-K$ packets of information
 - Since that is all the bits that you get at the receiver
- How close can we come to this upper bound?
 - We can actually achieve it!

Getting Around the Problem

- The problem is we don't know what data will be lost
 - To achieve the upper bound what data is lost can't matter
 - Any $(N-K)$ code outputs can give us our $(N-K)$ packet values
- For this to be true
 - Each packet value must be in at least $K+1$ code outputs
 - But since there are much less than $(K+1)(N-K)$ outputs
 - Most code values must contain multiple packet values
 - Huh?
- Linear algebra to the rescue!

Simple Example

- Assume we want to transmit 3 values X_1, X_2, X_3
 - And the channel may drop two in 5 packets
- What happens if we transmit:
 - X_1
 - X_2 ;
 - X_3 ;
 - $X_1+X_2+X_3$
 - $X_1+2*X_2+3*X_3$
- Can we solve for X_1, X_2, X_3 with any 3 packets?

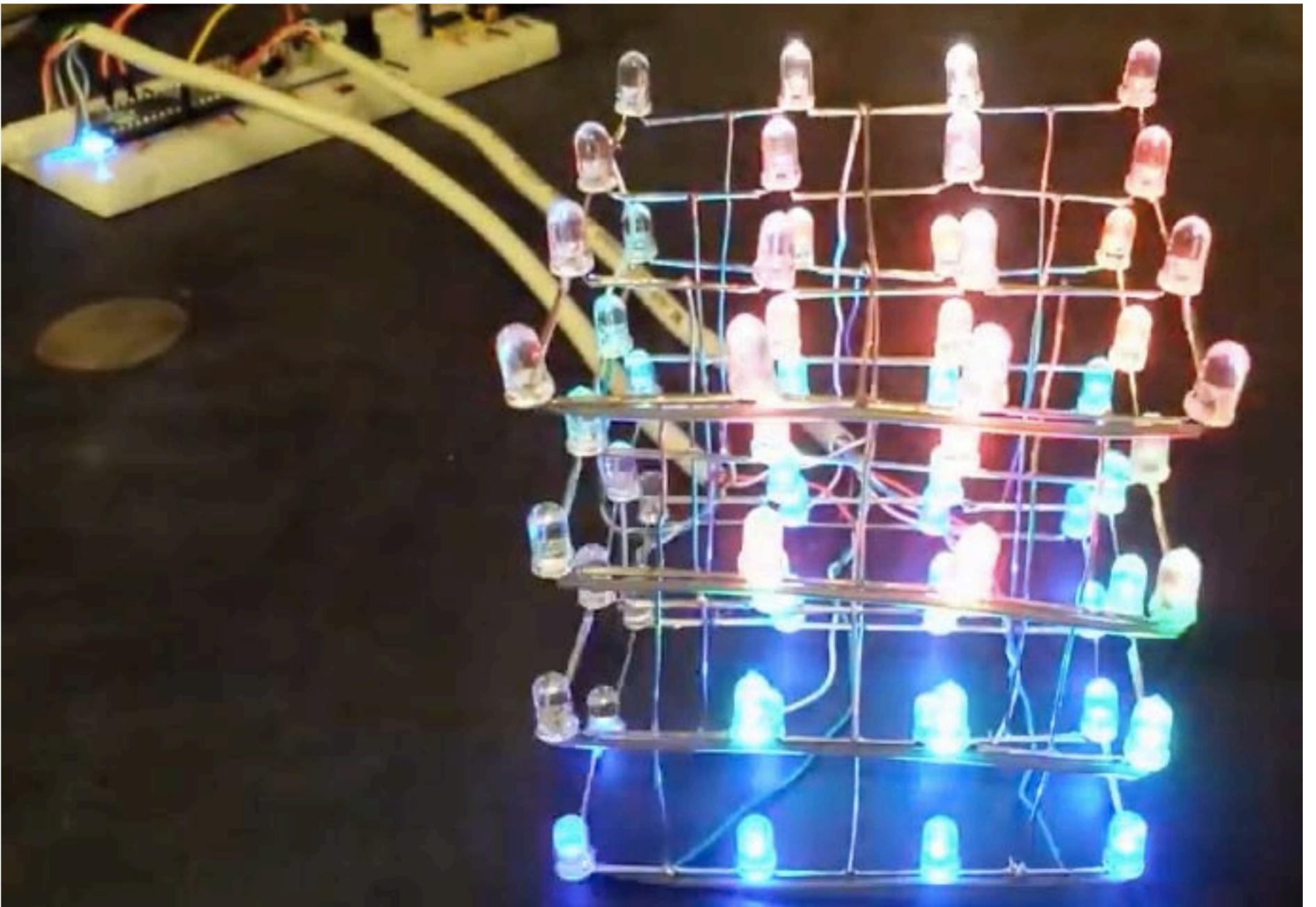
LINEAR
ALGEBRA!

Linear Algebra Formulation

- To solve for $M = N-K$ variables
 - How many linear equations are needed?
- If we create N independent linear combinations of M values
 - It doesn't matter which M equations we have
 - We have enough information to solve for the variables!
- Generally written in matrix notation
 - $Y = A X$, where A is a $N \times M$ matrix
 - $X = A^{-1} Y^*$, where the $*$ means the values you received

Time Multiplexing

- In the LED cube we will have 64 LEDs but they are wired so we can access rows and columns of the matrix.
- We'll explore a different type of coding later that will allow us to control each LED individually, even though we do not have a separate connection to each of them!



Learning Objectives

- Understand how binary numbers work
 - And be able to convert from decimal to binary numbers
- Understand what Electrical Engineers mean by a code
 - It is a set of rules to represent information
 - How to use two's complement codes
 - To represent positive and negative numbers
 - And what happens when an overflow occurs
- Understand how erasure codes allow you to recover your message even when some packets are dropped