E40M
Capacitors
Reading

• Reader:
 – Chapter 6 – Capacitance

• A & L:
 – 9.1.1, 9.2.1
Why Are Capacitors Useful/Important?

How do we design circuits that respond to certain frequencies? What determines how fast CMOS circuits can work?

Why did you put a 200μF capacitor between Vdd and Gnd on your Arduino?
CAPACITORS
Capacitors

• What is a capacitor?
 – It is a new type of two terminal device
 – It is linear
 • Double V, you will double I
 – We will see it doesn’t dissipate energy
 • Stores energy

• Rather than relating i and V
 – Relates Q, the charge stored on each plate, to Voltage
 – $Q = CV$
 – Q in Coulombs, V in Volts, and C in Farads

• Like all devices, it is always charge neutral
 – Stores $+Q$ on one lead, $-Q$ on the other lead
iV for a Capacitor

- We generally don’t work in Q, we like i and V
 - But current is charge flow, or \(\frac{dQ}{dt} \)

- So if \(Q = CV \), and \(i = \frac{dQ}{dt} \)
 - \(i = C \frac{dV}{dt} \)

- This is a linear equation but between \(I \) and \(\frac{dV}{dt} \). If you double \(i \) for all time, \(\frac{dV}{dt} \) will also double and hence \(V \) will double.

\[
C = \frac{\varepsilon A}{d}
\]

where \(\varepsilon \) is the dielectric constant
Capacitors Only Affect Time Response not Final Values

- Capacitors relate I to $\frac{dV}{dt}$
- This means if the circuit “settles down” and isn’t changing with time, a capacitor has no effect (looks like an open circuit).

@ $t = 0$

@ $t = \infty$
So What Do Capacitors Do?

- It affects how fast a voltage can change
 - Current sets \(\frac{dV}{dt} \), and not \(V \)
 - Fast changes require lots of current

- For very small \(\Delta t \) capacitors look like voltage sources
 - They can supply very large currents
 - And not change their voltage

- But for large \(\Delta t \)
 - Capacitors look like open circuits (they don’t do anything)
Capacitor Energy

• The Power that flows into a charging capacitor is

\[P = iV = \left(C \frac{dV}{dt} \right) V \]

• And the energy stored in the capacitor is

\[E = \int P \, dt \]

\[\therefore E = \int P \, dt = \int CV \, dV = \frac{1}{2} CV^2 \]

• This energy is stored and can be released at a later time. No energy is lost.
REAL CAPACITORS
Capacitor Types

- There are many different types of capacitors
 - Electrolytic, tantalum, ceramic, mica, . . .

- They come in different sizes
 - Larger capacitance
 - Generally larger size
 - Higher voltage compliance
 - Larger size

- Electrolytic have largest cap/volume
 - But they have limited voltage
 - They are polarized
 - One terminal must be + vs. other

Gate of MOS Transistor

• Is a capacitor between Gate and Source

• To change the gate voltage
 – You need a current pulse (to cause dV/dt)

• If the current is zero (floating)
 – $dV/dt = 0$, and the voltage remains what it was!
All Real Wires Have Capacitance

- It will take some charge to change the voltage of a wire
 - Think back to our definition of voltage
 - Potential energy for charge
 - To make a wire higher potential energy
 - Some charge has to flow into the wire, to make the energy higher for the next charge that flows into it

- This capacitance is what sets the speed of your computer
 - And determines how much power it takes!
Capacitor Info, If You Know Physics E&M…

• Models the fact that energy is stored in electric fields
 – Between any two wires that are close to each other

• A capacitor is formed by two terminals that are not connected
 – But are close to each other
 – The closer they are, the larger the capacitor

• To create a voltage between the terminals
 – Plus charge is collected on the positive terminal
 – Negative charge is collected on the negative terminal

• This creates an electric field (Gauss’s law)
 – Which is what creates the voltage across the terminals
 – There is energy stored in this electric field
Capacitors in Parallel and Series

\[i_T = i_1 + i_2 + i_3 = C_1 \frac{dV}{dt} + C_2 \frac{dV}{dt} + C_3 \frac{dV}{dt} \]

\[= (C_1 + C_2 + C_3) \frac{dV}{dt} \]

\[\therefore C_{\text{eqv}} = C_1 + C_2 + C_3 \]

\[V_T = V_1 + V_2 + V_3 = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3} = \frac{Q}{C_{\text{eqv}}} \]

\[\therefore \frac{1}{C_{\text{eqv}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \]
CAPACITOR RESISTOR CIRCUITS
Capacitors and Logic Gate Speeds

- When the input changes from low to high
 - The pMOS turns off, and the nMOS turns on
 - The output goes from high to low

- But in this model
 - The output changes as soon as the input changes
Gates Are NOT Zero Delay

• It would be great if logic gates had zero delay
 – But they don’t

• Fortunately, it is easy to figure out the delay of a gate
 – It is just caused by the transistor resistance
 • Which we know about already

 – And the transistor and wire capacitance
Improved Model

- Just add a capacitor to the output node
 - Its value is equal to the capacitance of the gates driven
 - Plus the capacitance of the wire itself
When the input to the inverter is low, the output will be at V_{dd}
- Right after the input rises, here is the circuit

Want to find the capacitor voltage verses time

Just write the nodal equations:
- We just have one node voltage, V_{out}
 - $i_{RES} = V_{out}/R_2$
 - $i_{CAP} = Cdv_{out}/dt$

From KCL, the sum of the currents must be zero, so

$$\frac{dV_{out}}{dt} = -\frac{V_{out}}{R_2C}$$
RC Circuit Equations

- Solving,
 \[\int_{5}^{V_{out}} \frac{dV_{out}}{V_{out}} = - \int_{0}^{t} \frac{dt}{R_{2}C} \]
 so that \[\ln(V_{out}) - \ln(5V) = - \frac{t}{R_{2}C} \]

- This is an exponential decay
 - The x axis is in time constants
 - The y axis has been normalized to 1
 - Slope always intersects 0 one tau later \((\tau = RC)\)
What Happens When Input Falls?

• Now the voltage across the capacitor starts at 0V
 – \(i = \frac{(V_{dd} - V_{out})}{R_1} \)
 – \(\frac{dV_{out}}{dt} = \frac{i}{C} \)

 \[
 \frac{dV_{out}}{dt} = \frac{(V_{dd} - V_{out})}{R_1C}
 \]

• Not quite the right form
 – Need to fix it by changing variables
 – Define \(V_{new} = V_{dd} - V_{out} \)
 – \(\frac{dV_{out}}{dt} = = - \frac{dV_{new}}{dt} \), since \(V_{dd} \) is fixed

\[
\int_{0}^{5} \frac{dV_{new}}{V_{new}} = -\int_{0}^{t} \frac{dt}{R_1C} \quad \text{so that} \quad \ln(V_{new}) - \ln(5) = -\frac{t}{R_1C} \quad \therefore \quad V_{out} = 5V\left(1 - e^{-t/R_1C}\right)
\]
In capacitor circuits, voltages change “slowly”, while currents can be instantaneous.
Simple RC Circuit Demo

EveryCircuit Demo – CMOS Inverter
Interesting Aside

- Exponentials “never” reach their final value
- So if this logic gate is driving another gate, when does the next gate think its input is 0 or 1?
- This is one of the reasons why logic levels are defined as a range of values.
Learning Objectives

- Understand what a capacitor is
 - \(i = C \frac{dV}{dt} \)
 - It is a device that tries to keep voltage constant
 - Will supply current (in either direction) to resist voltage changes

- Understand how voltages and current change in R C circuits
 - Voltage waveforms are continuous
 - Takes time for their value to change
 - Exponentially decay to final value (the DC value of circuit)
 - Currents can charge abruptly