### E40M

# **RC Circuits and Impedance**

# Reading

- Reader:
  - Chapter 6 Capacitance (if you haven't read it yet)
  - Section 7.3 Impedance
    - You should skip all the parts about inductors
    - We will talk about them in a lecture at the end of the quarter

# EKG (Lab 4)

- Concepts
  - Amplifiers
  - Impedance
  - Noise
  - Safety
  - Filters
- Components
  - Capacitors
  - Inductors
  - Instrumentation and Operational Amplifiers

In this project we will build an electrocardiagram (ECG or EKG). This is a noninvasive device that measures the electrical activity of the heart using electrodes placed on the skin.



### Why Are Capacitors Useful/Important?



How do we design circuits that respond to certain frequencies?

What determines how fast CMOS circuits can work?



Why did you put a 200  $\mu F$  capacitor between Vdd and Gnd on your Arduino?

### Key Ideas on Capacitors and RC Circuits - Review

- Capacitors store charge
  - The voltage across the capacitor is proportional to Q
    - V = Q/C; or Q = CV
    - Q in Coulombs, V in Volts, and C in Farads
  - But like all devices it is charge neutral
    - Stores +Q on one terminal; stores –Q on the other
- Sometimes we purposely use capacitors in circuits;
  - Other time we use them to model the capacitance of wires
    - These are sometime called parasitic capacitance
- Resulting i-V relation:
  - i = C(dV/dt)

### Key Ideas on Capacitors and RC Circuits - Review

- The voltage across a capacitor can't change instantaneously
  - That means the voltage across a capacitor won't change the instant after any switches/transistors flip
- Want to find the capacitor voltage verses time
- Just write the nodal equations:
  - We just have one node voltage,  $V_{out}$

$$i_{RES} = V_{out}/R_1$$
  
 $i_{CAP} = CdV_{out}/dt$ 



• From KCL, the sum of the currents must be zero, so

$$\frac{dV_{out}}{dt} = -\frac{V_{out}}{R_1C}$$

### Key Ideas on Capacitors and RC Circuits - Review



### **RC Circuit Analysis Approaches**

- For finding voltages and currents as functions of time, we solve linear differential equations or run EveryCircuit.
- There's a new and very different approach for analyzing RC circuits, based on the "frequency domain." This approach will turn out to be very powerful for solving many problems.

### How Can We Solve This Circuit?

- The input is sound from your computer; the output is going to go to your Arduino
- Now V<sub>in</sub> is a complicated waveform
  - How are we going to find  $V_{out}$ ?
- Two approaches
  - EveryCircuit
  - Decompose the input into sine waves: frequency analysis



# Time Domain vs. Frequency Domain

- Directly solving for the output to this:
  - Requires a computer
  - And the output will just be another squiggly line
- But
  - This waveform is the sum of sinewaves





### Superposition To The Rescue

- We know that sound can be represented by
  - A sum of sinewaves
- We also know that R, C are linear elements
  - So superposition holds
- Superposition says
  - The output is the sum of the response from each source
- So the output from a sound waveform
  - Is the sum of the outputs generated from each sinewave

### **Properties of Sinewaves**

- The problem with capacitors is that they take derivatives
  - This makes the problem solution a differential equation
- Exponential waveforms are nice since

$$\frac{d}{dt}\left(e^{-\frac{t}{\tau}}\right) = -\frac{1}{\tau}\left(e^{-\frac{t}{\tau}}\right)$$

• Sine waves have a similar property

$$\frac{d}{dt} \left[ \sin(2\pi Ft) \right] = 2\pi F \cos(2\pi Ft)$$
$$\frac{d}{dt} \left[ \cos(2\pi Ft) \right] = -2\pi F \sin(2\pi Ft)$$

### What This Means

- If you drive a R, C, circuit with  $sin(2\pi F t)$ 
  - All the waveforms in the circuits will be  $sin(2\pi F t)$ 
    - At different amplitudes, and with a phase shift
    - We will mark terms that are phase shifted by a 'j'.
       ["j" actually has a deeper meaning explained in the reader.]



### **Sinewave Driven Circuits**

- All voltages and currents are sinusoidal
- So we really just need to figure out
  - What is the amplitude of the resulting sinewave
  - And sometimes we need the phase shift, too (but not always)
- These values don't change with time
  - This problem is very similar to solving for DC voltages/currents
- In fact we can solve it exactly the same way ...

# IMPEDANCE

### Impedance

• Impedance is a concept that is a generalization of resistance:

$$R = \frac{V}{i}$$

R is simply a number with the units of Ohms.

• What about a capacitor? If V and i are sine waves, then

$$Z_{C} = \frac{V}{i} = \frac{V}{CdV/dt} = \frac{V_{0}\sin(2\pi Ft)}{2\pi FCV_{0}\cos(2\pi Ft)}$$

$$Z_{C} = \frac{V}{i} = \frac{1}{j*2\pi FC}$$

$$\dots \text{ if we ignore phase shift,} \qquad Z_{C} = \frac{V}{i} = \frac{1}{2\pi FC}$$

### Impedance of a Capacitor

- The impedance of a capacitor depends on frequency
- At low frequencies (F ≈ 0) Z<sub>C</sub> → ∞ and a capacitor behaves like an open circuit. Thus, if we are doing a "DC" analysis of a circuit (voltages and currents), capacitors are modeled as open circuits.
- At very high frequencies (F  $\approx$  infinity)  $Z_C \rightarrow 0$ and a capacitor behaves like a short circuit.
- At intermediate frequencies, the capacitor has an impedance given by Z<sub>C</sub>



# **USING IMPEDANCE**

### Using Impedance Makes Everything an R Circuit!

- Find V<sub>out</sub> / V<sub>in</sub>
- First, note that the capacitor Z<sub>C</sub> = ∞ at F = 0 (DC), so it becomes an open circuit. ∴ v<sub>out</sub>(DC)=
- We can now use superposition. Assume we have a sine wave input at V<sub>in</sub>



### **RC Circuit Analysis Using Impedance**



- The circuit becomes just a voltage divider, and we can analyze it the same way we have analyzed resistor only circuits.
  - That's the power of using impedance!

### Analyzing RC Circuits Using Impedance



• If the circuit had two resistors then we would know how to analyze it

$$\frac{V_{out}}{V_{in}} = \frac{R_2}{R_1 + R_2} \text{ or more generally, } \frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2}$$

• So we can still use the voltage divider approach with impedances

### Analyzing RC Circuits Using Impedance



- At low frequencies, (F ≈ 0), V<sub>out</sub> = 0 which means that low frequencies are not passed to the output. The capacitor blocks them.
  - Recall that we used this idea earlier to calculate the DC voltage at the output.
- At high frequencies (F large),  $V_{out} = V_{in}$

#### M. Horowitz, J. Plummer, R. Howe

### **Frequency Dependence of RC Circuit**



- This circuit passes high frequencies but blocks low frequencies.
- Sometimes called a "high pass filter".

 $\frac{V_{out}}{V_{in}} = \frac{j * 2\pi FRC}{1 + j * 2\pi FRC}$ 

F

# Analyzing RC Circuits Using Impedance (High Pass Filter)



### Impedance of Other RC Circuits



### Impedance of Other RC Circuits



Check limits on these expressions!

# Learning Objectives for Today

- Generalize RC circuit analysis in the time domain
- Impedance is the relationship between voltage and current
  - For a sinusoidal input
  - Z = V/I so for a capacitor,  $Z = 1/2\pi FC$  or  $1/j*2\pi FC$
- Understand how to use impedance to analyze RC circuits
  - Compute the "voltage divider" ratio to find output voltage
  - Calculate series and parallel effective impedances