
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 2 — Probability review

Recall from Lecture 1 our “fundamental principle”: Data is a realization of a random
process. Throughout this course, we will model the data using random variables. The
goal of this lecture is to review, with a statistical focus, relevant concepts concerning random
variables and their distributions.

2.1 Random variables

A discrete random variable X can take a finite or countably infinite number of possible
values. We use discrete random variables to model categorical data (for example, which
presidential candidate a voter supports) and count data (for example, how many cups of cof-
fee a graduate student drinks in a day). The distribution of X is specified by its probability
mass function (PMF):

fX(x) = P[X = x].

Then for any set A of values that X can take,

P[X ∈ A] =
∑
x∈A

fX(x).

A continuous random variable X takes values in R and models continuous real-valued
data (for example, the height of a person). For any single value x ∈ R, P[X = x] = 0.
Instead, the distribution of X is specified by its probability density function (PDF)
fX(x), which satisfies for any set A ⊆ R

P[X ∈ A] =

∫
A

fX(x)dx.

In both cases, when it is clear which random variable is being referred to, we will simply
write f(x) for fX(x).

Example 2.1. A Bernoulli random variable X ∼ Bernoulli(p) (for p ∈ [0, 1]) is discrete
and takes two possible values {0, 1}. Its PMF is given by

f(x) =

{
p x = 1

1− p x = 0.

Example 2.2. A Binomial random variable X ∼ Binomial(n, p) (for a positive integer
n and p ∈ [0, 1]) is discrete and takes values in {0, 1, 2, . . . , n}. Its PMF is given by (for
x = 0, 1, 2, . . . , n)

f(x) =

(
n

x

)
px(1− p)n−x.
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Example 2.3. A Gamma random variable X ∼ Gamma(α, β) (for α, β > 0) is continuous
and takes positive values. Its PDF is given by

f(x) =

{
βα

Γ(α)
xα−1e−βx x > 0

0 x ≤ 0.

In the above, Γ(α) is called the Gamma function, defined by

Γ(α) =

∫ ∞
0

xα−1e−xdx.

You can think of the Gamma function as extending the factorial function to all positive real
numbers. (For positive integers n, Γ(n) = (n− 1)!.)

Example 2.4. A Normal random variable X ∼ N (µ, σ2) (for µ ∈ R and σ2 > 0) is
continuous and can take any real value. Its PDF is given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

For any random variable X and real-valued function g, the expectation or mean of g(X)
is its “average value”. If X is discrete with PMF fX(x), then

E[g(X)] =
∑
x

g(x)fX(x)

where the sum is over all possible values of X. If X is continuous with PDF fX(x), then

E[g(X)] =

∫
R
g(x)fX(x)dx.

The expectation is linear : For any random variables X1, . . . , Xn (not necessarily indepen-
dent) and any c ∈ R,

E[X1 + . . .+Xn] = E[X1] + . . .+ E[Xn], E[cX] = cE[X].

If X1, . . . , Xn are independent, then

E[X1 . . . Xn] = E[X1] . . .E[Xn].

The variance of X is defined by the two equivalent expressions

Var[X] = E
[
(X − E[X])2

]
= E[X2]− (E[X])2.

For any c ∈ R, Var[cX] = c2 Var[X]. If X1, . . . , Xn are independent, then

Var[X1 + . . .+Xn] = Var[X1] + . . .+ Var[Xn].

If X1, . . . , Xn are not independent, then this is not true—Var[X1 + . . .+Xn] will depend on
the covariance between each pair of variables. The standard deviation of X is

√
Var[X].
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The distribution of X can also be specified by its cumulative distribution function
(CDF) FX(x) = P[X ≤ x]. In the discrete and continuous cases, respectively, this is given
by

FX(x) =
∑
y: y≤x

fX(y), FX(x) =

∫ x

−∞
fX(y)dy.

In the continuous case, the fundamental theorem of calculus implies

fX(x) =
d

dx
FX(x).

By definition, FX is monotonically increasing: FX(x) ≤ FX(y) if x < y. If FX is continuous
and strictly increasing, meaning FX(x) < FX(y) for all x < y, then FX has an inverse
function F−1

X : (0, 1)→ R called the quantile function: For any t ∈ (0, 1), F−1
X (t) is the tth

quantile of the distribution of X. I.e. the probability that X is less than this value is exactly
t.

2.2 Moment generating functions

A tool that will be particularly useful for us is the moment generating function (MGF)
of a random variable X. This is a function of a single argument t ∈ R, defined as

MX(t) = E[etX ].

Depending on the random variable X, MX(t) might be infinite for some values of t. Here
are two examples:

Example 2.5 (Normal MGF). Suppose X ∼ N (0, 1). Then

MX(t) = E[etX ] =

∫
etx

1√
2π
e−

x2

2 dx =

∫
1√
2π
e

−x2+2tx
2 dx.

To compute this integral, we complete the square:∫
1√
2π
e

−x2+2tx
2 dx =

∫
1√
2π
e

−x2+2tx−t2
2

+ t2

2 dx = e
t2

2

∫
1√
2π
e−

(x−t)2
2 dx.

The quantity inside the last integral above is the PDF of the N (t, 1) distribution—hence it
must integrate to 1. Then MX(t) = et

2/2.
Now suppose X ∼ N (µ, σ2). Then X = µ+ σZ, where Z ∼ N (0, 1). So

MX(t) = E[etX ] = E[eµt+σtZ ] = eµtE[eσtZ ] = eµtMZ(σt) = eµt+
σ2t2

2 .

For a normal random variable X, MX(t) is finite for all t ∈ R.

Example 2.6 (Gamma MGF). Suppose X ∼ Gamma(α, β), for α, β > 0. Then

MX(t) = E[etX ] =

∫ ∞
0

etx
βα

Γ(α)
xα−1e−βxdx =

∫ ∞
0

βα

Γ(α)
xα−1e(t−β)xdx.
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If t > β, then limx→∞ x
α−1e(t−β)x = ∞, so certainly the integral above is infinite. If t = β,

note that
∫∞

0
xα−1dx = 1

α
xα
∣∣∞
0

= ∞, since α > 0. Hence MX(t) = ∞ for any t ≥ β. For
t < β, let us rewrite the above to isolate the PDF of the Gamma(α, β − t) distribution:

MX(t) =
βα

(β − t)α

∫ ∞
0

(β − t)α

Γ(α)
xα−1e−(β−t)xdx.

As the PDF of the Gamma(α, β − t) distribution integrates to 1, we obtain finally

MX(t) =

{
∞ t ≥ β
βα

(β−t)α t < β

=

{
∞ t ≥ β

(1− β−1t)−α t < β.

If the MGF of a random variable X is finite in any interval that contains 0 as an interior
point, as in the above two examples, then (like the PDF or CDF) it also completely specifies
the distribution of X. This is the content of the following theorem (which we will not prove
in this class):

Theorem 2.7. Let X and Y be two random variables such that, for some h > 0 and every
t ∈ (−h, h), both MX(t) and MY (t) are finite and MX(t) = MY (t). Then X and Y have the
same distribution.

The reason why the MGF will be useful for us is because if X1, . . . , Xn are independent,
then the MGF of their sum satisfies

MX1+...+Xn(t) = E[et(X1+...+Xn)] = E[etX1 ]× . . .× E[etXn ] = MX1(t) . . .MXn(t).

This gives us a very simple tool to understand the distributions of sums of independent
random variables.
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