
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 3 — Probability review (cont’d)

3.1 Joint distributions

If random variables X1, . . . , Xk are independent, then their distribution may be specified by
specifying the individual distribution of each variable. If they are not independent, then
we need to specify their joint distribution. In the discrete case, the joint distribution is
specified by a joint PMF

fX1,...,Xk(x1, . . . , xk) = P[X1 = x1, . . . , Xk = xk].

In the continuous case, it is specified by a joint PDF fX1,...,Xk(x1, . . . , xk), which satisfies
for any set A ⊆ Rk,

P[(X1, . . . , Xk) ∈ A] =

∫
A

fX1,...,Xk(x1, . . . , xk)dx1 . . . dxk.

When it is clear which random variables are being referred to, we will simply write f(x1, . . . , xk)
for fX1,...,Xk(x1, . . . , xk).

Example 3.1. (X1, . . . , Xk) have a multinomial distribution,

(X1, . . . , Xk) ∼ Multinomial(n, (p1, . . . , pk)),

if these random variables take nonnegative integer values summing to n, with joint PMF

f(x1, . . . , xk) =

(
n

x1, . . . , xn

)
px11 p

x2
2 . . . pxkk .

Here, p1, . . . , pk are values in [0, 1] that satisfy p1 + . . . + pk = 1 (representing the proba-
bilies of k different mutually exclusive outcomes), and

(
n

x1,...,xn

)
is the multinomial coefficient(

n
x1,...,xn

)
= n!

x1!x2!...xn!
. (It is understood that the above formula is only for x1, . . . , xk ≥ 0

such that x1 + . . . + xk = n; otherwise f(x1, . . . , xk) = 0.) X1, . . . , Xk describe the number
of samples belonging to each of k different outcomes, if there are n total samples each in-
dependently belonging to outcomes 1, . . . , k with probabilities p1, . . . , pk. For example, if I
roll a standard six-sided die 100 times and let X1, . . . , X6 denote the numbers of 1’s to 6’s
obtained, then (X1, . . . , X6) ∼ Multinomial(100, (1

6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
)).

A second example of a joint distribution is the Multivariate Normal distribution, discussed
in the next section.

The covariance between two random variables X and Y is defined by the two equivalent
expressions

Cov[X, Y ] = E [(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].
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So Cov[X,X] = Var[X], and Cov[X, Y ] = 0 if X and Y are independent. The covariance is
bilinear : For any constants a1, . . . , ak, b1, . . . , bm ∈ R and any random variables X1, . . . , Xk

and Y1, . . . , Ym (not necessarily independent),

Cov[a1X1 + . . .+ akXk, b1Y1 + . . .+ bmYm] =
k∑
i=1

m∑
j=1

aibj Cov[Xi, Yj].

The correlation between X and Y is their covariance normalized by the product of their
standard deviations:

corr(X, Y ) =
Cov[X, Y ]√

Var[X]
√

Var[Y ]
.

For any a, b > 0, we have Cov[aX, bY ] = abCov[X, Y ]. On the other hand, the correlation is
invariant to rescaling: corr(aX, bY ) = corr(X, Y ), and satisfies always −1 ≤ corr(X, Y ) ≤ 1.

3.2 The Multivariate Normal distribution

The Multivariate Normal distribution of dimension k is a distribution for k random
variables X1, . . . , Xk which generalizes the normal distribution for a single variable. It is
parametrized by a mean vector µ ∈ Rk and a symmetric covariance matrix Σ ∈ Rk×k,
and we write

(X1, . . . , Xk) ∼ N (µ,Σ).

Rather than writing down the general formula for its joint PDF (which we will not use in
this course), let’s define this distribution by the following properties:

Definition 3.2. (X1, . . . , Xk) have a multivariate normal distribution if, for every choice of
constants a1, . . . , ak ∈ R, the linear combination a1X1 + . . .+akXk has a (univariate) normal
distribution. (X1, . . . , Xk) have the specific multivariate normal distribution N (µ,Σ) when,
in addition,

1. E[Xi] = µi and Var[Xi] = Σii for every i = 1, . . . , k, and

2. Cov[Xi, Xj] = Σij for every pair i 6= j.

When (X1, . . . , Xk) are multivariate normal, each Xi has a (univariate) normal distribu-
tion, as may be seen by taking ai = 1 and all other aj = 0 in the above definition. The
vector µ specifies the means of these individual normal variables, the diagonal elements of Σ
specify their variances, and the off-diagonal elements of Σ specify their pairwise covariances.

Example 3.3. If X1, . . . , Xk are normal and independent, then a1X1 + . . . + akXk has a
normal distribution for any a1, . . . , ak ∈ R. To show this, we can use the MGF: Suppose
Xi ∼ N (µi, σ

2
i ). Then aiXi ∼ N (aiµi, a

2
iσ

2
i ), so (from Lecture 2) aiXi has MGF

MaiXi(t) = eaiµit+
a2i σ

2
i t

2

2 .
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As a1X1, . . . , akXk are independent, the MGF of their sum is the product of their MGFs:

Ma1X1+...+akXk(t) = Ma1X1(t)× . . .×MakXk(t)

= ea1µ1t+
a21σ

2
1t

2

2 × . . .× eakµkt+
a2nσ

2
nt

2

2

= e(a1µ1+...+akµk)t+
(a21σ

2
1+...+a

2
kσ

2
k)t

2

2 .

But this is the MGF of a N (a1µ1 + . . . + akµk, a
2
1σ

2
1 + . . . + a2kσ

2
k) random variable! As the

MGF uniquely determines the distribution, this implies a1X1 + . . . + akXk has this normal
distribution.

Then by definition, (X1, . . . , Xk) are multivariate normal. More specifically, in this case
we must have (X1, . . . , Xk) ∼ N (µ,Σ) where µi = E[Xi], Σii = Var[Xi], and Σij = 0 for all
i 6= j.

Example 3.4. Suppose (X1, . . . , Xk) have a multivariate normal distribution, and (Y1, . . . , Ym)
are such that each Yj (j = 1, . . . ,m) is a linear combination of X1, . . . , Xk:

Yj = aj1X1 + . . .+ ajkXk

for some constants aj1, . . . , ajk ∈ R. Then any linear combination of (Y1, . . . , Ym) is also a
linear combination of (X1, . . . , Xk), and hence is normally distributed. So (Y1, . . . , Ym) also
have a multivariate normal distribution.

For two arbitrary random variables X and Y , if they are independent, then corr(X, Y ) =
0. The converse is in general not true: X and Y can be uncorrelated without being indepen-
dent. But this converse is true in the special case of the multivariate normal distribution;
more generally, we have the following:

Theorem 3.5. Suppose X is multivariate normal and can be written as X = (X1,X2),
where X1 and X2 are subvectors of X such that each entry of X1 is uncorrelated with each
entry of X2. Then X1 and X2 are independent.

To visualize what the joint PDF of the multivariate normal distribution looks like, let’s
just consider the two-dimensional setting k = 2, where we obtain the special case of a
Bivariate Normal distribution for two random variables X, Y . In this case, the distribution
is specified by the means µ1 and µ2 of X and Y , the variances σ2

1 and σ2
2 of X and Y , and

the correlation ρ between X and Y . When σ2
1 = σ2

2 = 1 and µ1 = µ2 = 0, the contours of
the joint PDF of X and Y are shown below, for ρ = 0 on the left and ρ = 0.75 on the right:

3-3



312 Introduction to Probability

x

−3
−2

−1
0

1
2

3y

−3

−2

−1

0

1

2

3

0.05

0.10

0.15

x

−3
−2

−1
0

1
2

3y

−3

−2

−1

0

1

2

3
0.00
0.05
0.10
0.15

0.20

x

y

−2

−1

0

1

2

−2 −1 0 1 2

x

y

−2

−1

0

1

2

−2 −1 0 1 2

FIGURE 7.11

Joint PDFs of two Bivariate Normal distributions. On the left, X and Y are
marginally N (0, 1) and have zero correlation. On the right, X and Y are marginally
N (0, 1) and have correlation 0.75.

When ρ = 0, X and Y are independent standard normal variables, and these contours are
circular; the joint PDF has a peak at 0 and decays radially away from 0. When ρ = 0.7, the
contours are ellipses. As ρ increases to 1, the contours concentrate more and more around
the line y = x. (In the general k-dimensional setting and for general µ and Σ, the joint PDF
has a single peak at the mean µ ∈ Rk, and it decays away from µ with contours that are
ellipsoids around µ, with their shape depending on Σ.)

3.3 Statistics

For data X1, . . . , Xn, a statistic T (X1, . . . , Xn) is any real-valued function of the data. In
other words, it is any number that you can compute from the data. For example, the sample
mean

X̄ =
1

n
(X1 + . . .+Xn),

the sample variance

S2 =
1

n− 1
((X1 − X̄)2 + . . .+ (Xn − X̄)2),

and the range
R = max(X1, . . . , Xn)−min(X1, . . . , Xn)

are all statistics. Since the data X1, . . . , Xn are realizations of random variables, a statistic
is also a (realization of a) random variable. A major use of probability in this course will
be to understand the distribution of a statistic, called its sampling distribution, based on
the distribution of the original data X1, . . . , Xn.

Let’s work through some examples:

Example 3.6 (Sample mean of IID normals). SupposeX1, . . . , Xn
IID∼ N (µ, σ2). The sample

mean X̄ is actually a special case of the quantity a1X1 + . . .+anXn from Example 3.3, where
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ai = 1
n
, µi = µ, and σ2

i = σ2 for all i = 1, . . . , n. Then from that Example,

X̄ ∼ N
(
µ,
σ2

n

)
.

Example 3.7 (Chi-squared distribution). Suppose X1, . . . , Xn
IID∼ N (0, 1). Let’s derive the

distribution of the statistic
X2

1 + . . .+X2
n.

By independence of X2
1 , . . . , X

2
n,

MX2
1+...+X

2
n
(t) = MX2

1
(t)× . . .×MX2

n
(t).

We may compute, for each Xi, its MGF

MX2
i
(t) = E[etX

2
i ] =

∫
etx

2 1√
2π
e−

x2

2 dx =

∫
1√
2π
e(t−

1
2
)x2dx.

If t ≥ 1
2
, then MX2

i
(t) =∞. Otherwise,

MX2
i
(t) =

1√
1− 2t

∫ √
1− 2t

2π
e−

1
2
(1−2t)x2dx.

We recognize the quantity inside this integral as the PDF of the N (0, 1
1−2t

) distribution, and
hence the integral equals 1. Then

MX2
i
(t) =

{
∞ t ≥ 1

2

(1− 2t)−1/2 t < 1
2
.

This is the MGF of the Gamma(1
2
, 1
2
) distribution, so X2

i ∼ Gamma(1
2
, 1
2
). This is also called

the chi-squared distribution with 1 degree of freedom, denoted χ2
1.

Going back to the sum,

MX2
1+...+X

2
n
(t) = MX2

1
(t)× . . .×MX2

n
(t) =

{
∞ t ≥ 1

2

(1− 2t)−n/2 t < 1
2
.

This is the MGF of the Gamma(n
2
, 1
2
) distribution, so X2

1 + . . .+X2
n ∼ Gamma(n

2
, 1
2
). This

is called the chi-squared distribution with nnn degrees of freedom, denoted χ2
n.
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