
STATS 200: Introduction to Statistical Inference

Lecture 4: Asymptotics and simulation



Recap

We’ve discussed a few examples of how to determine the
distribution of a statistic computed from data, assuming a certain
probability model for the data.

For example, last lecture we showed the following results: If

X1, . . . ,Xn
IID⇠ N (0, 1), then

X̄ ⇠ N
�
0, 1n

�
,

X

2
1 + . . .+ X

2
n ⇠ �2

n.



Reality check

For many (seemingly simple) statistics, it’s di�cult to describe its
PMF or PDF exactly. For example:

1. Suppose X1, . . . ,X100
IID⇠ Uniform(�1, 1). What is the

distribution of X̄?

2. Suppose (X1, . . . ,X6) ⇠ Multinomial
�
500,

�
1
6 , . . . ,

1
6

��
. What

is the distribution of

T =

✓
X1

500
� 1

6

◆2

+ . . .+

✓
X6

500
� 1

6

◆2

?

For questions that we don’t know how to answer exactly, we’ll try
to answer them approximately.



Sample mean of IID uniform

If we fully specify the distribution of data, then we can always
simulate the distribution of any statistic:

nreps = 10000

sample.mean = numeric(nreps)

n = 100

for (i in 1:nreps) {

X = runif(n, min=-1, max=1)

sample.mean[i] = mean(X)

}

hist(sample.mean)



Sample mean of IID uniform
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Is your friend cheating you in dice?

nreps = 10000

T = numeric(nreps)

n = 500

p = c(1/6,1/6,1/6,1/6,1/6,1/6)

for (i in 1:nreps) {

X = rmultinom(1,n,p)

T[i] = sum((X/n-p)^2)

}

hist(T)



Is your friend cheating you in dice?
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Asymptotic analysis

Oftentimes, a very good approximate answer emerges when n is
large (in other words, you have many samples). We call results
that rely on this type of approximation asymptotic.

If we can just simulate, why do asymptotic analysis?

1. Better understanding of the behavior. (Understanding the
assumptions: What if Xi are not uniform? What if I don’t
really know the distribution of Xi? Understanding the scaling:
What if n = 1000 instead of 100? What if n = 1,000,000?)

2. Faster to get an answer.



(Weak) Law of Large Numbers

Theorem (LLN)

Suppose X1, . . . ,Xn are IID, with E[X1] = µ and Var[X1] < 1. Let

X̄n = 1
n (X1 + . . .+ Xn). Then, for any fixed " > 0, as n ! 1,

P[|X̄n � µ| > "] ! 0.

A sequence of random variables {Tn}1n=1 converges in

probability to a constant c 2 R if, for any fixed " > 0, as n ! 1,

P[|Tn � c | > "] ! 0.

So the LLN says X̄n ! µ in probability.
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Central Limit Theorem

Theorem (CLT)

Suppose X1, . . . ,Xn are IID, with E[X1] = µ and

Var[X1] = �2 < 1. Let X̄n = 1
n (X1 + . . .+ Xn). Then, for any

fixed x 2 R, as n ! 1,

P
p

n

✓
X̄n � µ

�

◆
 x

�
! �(x),

where � is the CDF of the N (0, 1) distribution.

{Tn}1n=1 converges in distribution to a probability distribution
with CDF F if, for every x 2 R where F is continuous, as n ! 1,

P[Tn  x ] ! F (x).

We sometimes write Tn ! Z in distribution, where Z is a random
variable having this distribution F . So the CLT says
p
n

⇣
X̄n�µ

�

⌘
! Z in distribution where Z ⇠ N (0, 1).
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The Di↵erence is in Scaling

How can the same statistic X̄n converge both in probability and in
distribution? The di↵erence is in scaling:

X1, . . . ,X100 ⇠ Uniform(�1, 1). X̄100 across 10000 simulations:
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This illustrates the LLN, that is, X̄n ! 0 in probability.



The Di↵erence is in Scaling

Here’s the exact same histogram, on a di↵erent scale:
Histogram of sample.mean
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This illustrates the CLT, that is,
p
3nX̄n ! N (0, 1) in distribution.

(Here Var[X1] =
1
3 .)



Sample mean of IID uniform

By the CLT, the distribution of X̄n is approximately N
�
0, 1

3n

�
.

How good is this approximation? Here’s a comparison of CDF
values, for sample size n = 10:⇤

Normal Exact
0.01 0.009
0.25 0.253
0.50 0.500
0.75 0.747
0.99 0.991

It’s already very close! In general, accuracy depends on

I Sample size n,

I Skewness of the distribution of Xi , and

I Heaviness of tails of the distribution of Xi

⇤
Using www.math.uah.edu/stat/apps/SpecialCalculator.html

www.math.uah.edu/stat/apps/SpecialCalculator.html


Multivariate generalizations

Consider
X = (X1, . . . ,Xk) 2 Rk

(with some k-dimensional joint distribution), and let

µi = E[Xi ], ⌃ii = Var[Xi ], ⌃ij = Cov[Xi ,Xj ].

Let X(1), . . . ,X(n) 2 Rk be IID, each with the same joint
distribution as X. Let X̄n = 1

n (X
(1) + . . .+ X

(n)) 2 Rk .

For example: We measure the height and weight of n randomly
chosen people. X(l) 2 R2 is the height and weight of person l .
Height is not independent of weight for the same person, but let’s
assume they are IID across di↵erent people. X̄n 2 R2 is the
average height and average weight of the n people.



Multivariate generalizations

Theorem (LLN)

As n ! 1, X̄n converges in probability to µ.

Theorem (CLT)

As n ! 1,

p
n(X̄n � µ) converges in distribution to the

multivariate normal distribution N (0,⌃).

(We say a sequence {Tn}1n=1 of random vectors in Rk
converges in probability

to µ 2 Rk
if P[kTn �µk > "] ! 0 for any " > 0, where k ·k is the vector length.

We say {Tn}1n=1 converges in distribution to Z if, for any set A ✓ Rk
such that

Z belongs to the boundary of A with probability 0, P[Tn 2 A] ! P[Z 2 A].)



Approximating the multinomial distribution for large n

Suppose (Y1, . . . ,Y6) ⇠ Multinomial
�
n,
�
1
6 , . . . ,

1
6

��
. Y represents

the number of times we obtain 1 through 6 when rolling a 6-sided
die n times.

For each l = 1, . . . , n, let X(l) = (1, 0, 0, 0, 0, 0) if we got 1 on the
l

th roll, (0, 1, 0, 0, 0, 0) if we got 2 on the l

th roll, etc. Then
(Y1, . . . ,Y6) = X

(1) + . . .+ X

(n).

Let’s apply the (multivariate) LLN and CLT!



Approximating the multinomial distribution for large n

Let’s write X

(1) = (X1, . . . ,X6), so X1, . . . ,X6 are random variables
where exactly one them equals 1 (and the rest equal 0). Then:

E[Xi ] = P[Xi = 1] =
1

6
,

Var[Xi ] = E[X 2
i ]� (E[Xi ])

2 =
1

6
�
✓
1

6

◆2

=
5

36
,

Cov[Xi ,Xj ] = E[XiXj ]� E[Xi ]E[Xj ] = 0�
✓
1

6

◆2

= � 1

36
.

for i 6= j
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Approximating the multinomial distribution for large n
By the LLN, as n ! 1,

✓
Y1

n

, . . . ,
Y6

n

◆
!

✓
1

6
, . . . ,

1

6

◆

in probability. By the CLT, as n ! 1,

p
n

✓
Y1

n

� 1

6
, . . . ,

Y6

n

� 1

6

◆
! N (0,⌃)

in distribution, where

⌃ =

0

BBB@

5
36 � 1

36 · · · � 1
36

� 1
36

5
36 · · · � 1

36
...

...
. . .

...
� 1

36 � 1
36 · · · 5

36

1

CCCA
2 R6⇥6.

(The negative values of ⌃ij for i 6= j mean Yi and Yj are, as
expected, slightly anti-correlated.)



Continuous mapping

The LLN and CLT can be used as building blocks to understand
other statistics, via the Continuous Mapping Theorem:

Theorem

If Tn ! c in probability, then g(Tn) ! g(c) in probability for any

continuous function g .

If Tn ! Z in distribution, then g(Tn) ! g(Z ) in distribution for

any continuous function g .

(These hold in both the univariate and multivariate settings.)



Is your friend cheating you in dice?

Recall

nTn = n

✓
Y1

n

� 1

6

◆2

+ . . .+ n

✓
Y6

n

� 1

6

◆2

.

The function g(x1, . . . , x6) = x

2
1 + . . .+ x

2
6 is continuous, so

nTn ! Z

2
1 + . . .+ Z

2
6 .

in distribution, where (Z1, . . . ,Z6) ⇠ N (0,⌃).

Hence, when n is large, the distribution of Tn is approximately that
of 1

n (Z
2
1 + . . .+ Z

2
6 ).

Finally, what is the distribution of Z 2
1 + . . .+ Z

2
6 ?
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Is your friend cheating you in dice?

Using bilinearity of covariance, it is easy to show that if

W1, . . . ,W6
IID⇠ N (0, 1),

then
1p
6
(W1 � W̄ , . . . ,W6 � W̄ ) ⇠ N (0,⌃).

(Here W̄ = 1
6(W1 + . . .+W6).)

So Z

2
1 + . . .+ Z

2
6 has the same distribution as

1

6

�
(W1 � W̄ )2 + . . .+ (W6 � W̄ )2

�
.

This is the sample variance of 6 IID standard normals, which we
will show next week has distribution 1

6�
2
5.

Conclusion: Tn has approximate distribution 1
6n�

2
5.
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Is your friend cheating you in dice?

Here’s our simulated histogram of Tn, overlaid with the
(appropriately rescaled) PDF of the 1

6n�
2
5 distribution:
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