STATS 200: Introduction to Statistical Inference Lecture 4: Asymptotics and simulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Recap

We've discussed a few examples of how to determine the distribution of a **statistic** computed from data, assuming a certain probability model for the data.

For example, last lecture we showed the following results: If  $X_1, \ldots, X_n \stackrel{ID}{\sim} \mathcal{N}(0, 1)$ , then

 $ar{X} \sim \mathcal{N}\left(0, rac{1}{n}
ight),$  $X_1^2 + \ldots + X_n^2 \sim \chi_n^2.$ 

# Reality check

For many (seemingly simple) statistics, it's difficult to describe its PMF or PDF exactly. For example:

- 1. Suppose  $X_1, \ldots, X_{100} \stackrel{ID}{\sim} \text{Uniform}(-1, 1)$ . What is the distribution of  $\overline{X}$ ?
- 2. Suppose  $(X_1, \ldots, X_6) \sim \text{Multinomial}(500, (\frac{1}{6}, \ldots, \frac{1}{6}))$ . What is the distribution of

$$T = \left(\frac{X_1}{500} - \frac{1}{6}\right)^2 + \ldots + \left(\frac{X_6}{500} - \frac{1}{6}\right)^2?$$

For questions that we don't know how to answer exactly, we'll try to answer them approximately.

# Sample mean of IID uniform

If we fully specify the distribution of data, then we can always **simulate** the distribution of any statistic:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
nreps = 10000
sample.mean = numeric(nreps)
n = 100
for (i in 1:nreps) {
    X = runif(n, min=-1, max=1)
        sample.mean[i] = mean(X)
}
hist(sample.mean)
```

# Sample mean of IID uniform

Histogram of sample.mean



```
nreps = 10000
T = numeric(nreps)
n = 500
p = c(1/6,1/6,1/6,1/6,1/6,1/6)
for (i in 1:nreps) {
    X = rmultinom(1,n,p)
    T[i] = sum((X/n-p)^2)
}
hist(T)
```

Histogram of T



イロト イポト イヨト イヨト

æ

# Asymptotic analysis

Oftentimes, a very good approximate answer emerges when n is large (in other words, you have many samples). We call results that rely on this type of approximation **asymptotic**.

If we can just simulate, why do asymptotic analysis?

1. Better understanding of the behavior. (Understanding the assumptions: What if  $X_i$  are not uniform? What if I don't really know the distribution of  $X_i$ ? Understanding the scaling: What if n = 1000 instead of 100? What if n = 1,000,000?)

2. Faster to get an answer.

#### (Weak) Law of Large Numbers

#### Theorem (LLN)

Suppose  $X_1, \ldots, X_n$  are IID, with  $\mathbb{E}[X_1] = \mu$  and  $Var[X_1] < \infty$ . Let  $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$ . Then, for any fixed  $\varepsilon > 0$ , as  $n \to \infty$ ,

 $\mathbb{P}[|\bar{X}_n - \mu| > \varepsilon] \to 0.$ 

## (Weak) Law of Large Numbers

#### Theorem (LLN)

Suppose  $X_1, \ldots, X_n$  are IID, with  $\mathbb{E}[X_1] = \mu$  and  $Var[X_1] < \infty$ . Let  $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$ . Then, for any fixed  $\varepsilon > 0$ , as  $n \to \infty$ ,

 $\mathbb{P}[|\bar{X}_n-\mu|>\varepsilon]\to 0.$ 

A sequence of random variables  $\{T_n\}_{n=1}^{\infty}$  converges in probability to a constant  $c \in \mathbb{R}$  if, for any fixed  $\varepsilon > 0$ , as  $n \to \infty$ ,

$$\mathbb{P}[|T_n-c|>\varepsilon]\to 0.$$

So the LLN says  $\bar{X}_n \rightarrow \mu$  in probability.

## Central Limit Theorem

#### Theorem (CLT)

Suppose  $X_1, \ldots, X_n$  are IID, with  $\mathbb{E}[X_1] = \mu$  and  $\operatorname{Var}[X_1] = \sigma^2 < \infty$ . Let  $\overline{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$ . Then, for any fixed  $x \in \mathbb{R}$ , as  $n \to \infty$ ,

$$\mathbb{P}\left[\sqrt{n}\left(\frac{\bar{X}_n-\mu}{\sigma}\right)\leq x\right]\to\Phi(x),$$

where  $\Phi$  is the CDF of the  $\mathcal{N}(0,1)$  distribution.

# Central Limit Theorem

#### Theorem (CLT)

Suppose  $X_1, \ldots, X_n$  are IID, with  $\mathbb{E}[X_1] = \mu$  and  $\operatorname{Var}[X_1] = \sigma^2 < \infty$ . Let  $\overline{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$ . Then, for any fixed  $x \in \mathbb{R}$ , as  $n \to \infty$ ,

$$\mathbb{P}\left[\sqrt{n}\left(rac{ar{X}_n-\mu}{\sigma}
ight)\leq x
ight]
ightarrow\Phi(x),$$

where  $\Phi$  is the CDF of the  $\mathcal{N}(0,1)$  distribution.

 $\{T_n\}_{n=1}^{\infty}$  converges in distribution to a probability distribution with CDF *F* if, for every  $x \in \mathbb{R}$  where *F* is continuous, as  $n \to \infty$ ,

$$\mathbb{P}[T_n \leq x] \to F(x).$$

We sometimes write  $T_n \to Z$  in distribution, where Z is a random variable having this distribution F. So the CLT says  $\sqrt{n}\left(\frac{\bar{X}_n-\mu}{\sigma}\right) \to Z$  in distribution where  $Z \sim \mathcal{N}(0,1)$ .

# The Difference is in Scaling

How can the same statistic  $\bar{X}_n$  converge both in probability and in distribution? The difference is in scaling:

 $X_1, \ldots, X_{100} \sim \text{Uniform}(-1, 1)$ .  $\overline{X}_{100}$  across 10000 simulations:



#### Histogram of sample.mean

This illustrates the LLN, that is,  $\bar{X}_n \rightarrow 0$  in probability.

# The Difference is in Scaling

Here's the exact same histogram, on a different scale:

Histogram of sample.mean



This illustrates the CLT, that is,  $\sqrt{3n}\bar{X}_n \to \mathcal{N}(0,1)$  in distribution. (Here  $\operatorname{Var}[X_1] = \frac{1}{3}$ .)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

# Sample mean of IID uniform

By the CLT, the distribution of  $\bar{X}_n$  is approximately  $\mathcal{N}\left(0,\frac{1}{3n}\right)$ .

How good is this approximation? Here's a comparison of CDF values, for sample size n = 10:\*

| Normal | Exact |
|--------|-------|
| 0.01   | 0.009 |
| 0.25   | 0.253 |
| 0.50   | 0.500 |
| 0.75   | 0.747 |
| 0.99   | 0.991 |

It's already very close! In general, accuracy depends on

- Sample size *n*,
- Skewness of the distribution of X<sub>i</sub>, and
- Heaviness of tails of the distribution of X<sub>i</sub>

<sup>\*</sup>Using www.math.uah.edu/stat/apps/SpecialCalculator.html 😑 🛛 🔤 🔊 ०० 👁

#### Multivariate generalizations

Consider

$$\mathbf{X} = (X_1, \ldots, X_k) \in \mathbb{R}^k$$

(with some k-dimensional joint distribution), and let

$$\mu_i = \mathbb{E}[X_i], \ \Sigma_{ii} = \mathsf{Var}[X_i], \ \Sigma_{ij} = \mathsf{Cov}[X_i, X_j].$$

Let  $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(n)} \in \mathbb{R}^k$  be IID, each with the same joint distribution as  $\mathbf{X}$ . Let  $\bar{\mathbf{X}}_n = \frac{1}{n} (\mathbf{X}^{(1)} + \ldots + \mathbf{X}^{(n)}) \in \mathbb{R}^k$ .

For example: We measure the height and weight of *n* randomly chosen people.  $\mathbf{X}^{(I)} \in \mathbb{R}^2$  is the height and weight of person *I*. Height is not independent of weight for the same person, but let's assume they are IID across different people.  $\mathbf{\bar{X}}_n \in \mathbb{R}^2$  is the average height and average weight of the *n* people.

#### Multivariate generalizations

Theorem (LLN) As  $n \to \infty$ ,  $\bar{\mathbf{X}}_n$  converges in probability to  $\mu$ .

#### Theorem (CLT)

As  $n \to \infty$ ,  $\sqrt{n}(\bar{\mathbf{X}}_n - \mu)$  converges in distribution to the multivariate normal distribution  $\mathcal{N}(0, \Sigma)$ .

(We say a sequence  $\{\mathbf{T}_n\}_{n=1}^{\infty}$  of random vectors in  $\mathbb{R}^k$  converges in probability to  $\mu \in \mathbb{R}^k$  if  $\mathbb{P}[\|\mathbf{T}_n - \mu\| > \varepsilon] \to 0$  for any  $\varepsilon > 0$ , where  $\|\cdot\|$  is the vector length. We say  $\{\mathbf{T}_n\}_{n=1}^{\infty}$  converges in distribution to  $\mathbf{Z}$  if, for any set  $A \subseteq \mathbb{R}^k$  such that  $\mathbf{Z}$  belongs to the boundary of A with probability 0,  $\mathbb{P}[\mathbf{T}_n \in A] \to \mathbb{P}[\mathbf{Z} \in A]$ .)

Suppose  $(Y_1, \ldots, Y_6) \sim$  Multinomial  $(n, (\frac{1}{6}, \ldots, \frac{1}{6}))$ . Y represents the number of times we obtain 1 through 6 when rolling a 6-sided die *n* times.

For each l = 1, ..., n, let  $\mathbf{X}^{(l)} = (1, 0, 0, 0, 0, 0)$  if we got 1 on the  $l^{\text{th}}$  roll, (0, 1, 0, 0, 0, 0) if we got 2 on the  $l^{\text{th}}$  roll, etc. Then  $(Y_1, ..., Y_6) = \mathbf{X}^{(1)} + ... + \mathbf{X}^{(n)}$ .

Let's apply the (multivariate) LLN and CLT!

Let's write  $\mathbf{X}^{(1)} = (X_1, \dots, X_6)$ , so  $X_1, \dots, X_6$  are random variables where exactly one them equals 1 (and the rest equal 0). Then:

$$\mathbb{E}[X_i] = \mathbb{P}[X_i = 1] = rac{1}{6},$$

Let's write  $\mathbf{X}^{(1)} = (X_1, \dots, X_6)$ , so  $X_1, \dots, X_6$  are random variables where exactly one them equals 1 (and the rest equal 0). Then:

$$\mathbb{E}[X_i] = \mathbb{P}[X_i = 1] = \frac{1}{6},$$
  
$$Var[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = \frac{1}{6} - \left(\frac{1}{6}\right)^2 = \frac{5}{36},$$

Let's write  $\mathbf{X}^{(1)} = (X_1, \dots, X_6)$ , so  $X_1, \dots, X_6$  are random variables where exactly one them equals 1 (and the rest equal 0). Then:

$$\mathbb{E}[X_i] = \mathbb{P}[X_i = 1] = \frac{1}{6},$$
  

$$Var[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = \frac{1}{6} - \left(\frac{1}{6}\right)^2 = \frac{5}{36},$$
  

$$Cov[X_i, X_j] = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i]\mathbb{E}[X_j] = 0 - \left(\frac{1}{6}\right)^2 = -\frac{1}{36}.$$
  
for  $i \neq j$ 

Approximating the multinomial distribution for large nBy the LLN, as  $n \rightarrow \infty$ ,

$$\left(\frac{Y_1}{n},\ldots,\frac{Y_6}{n}\right) \rightarrow \left(\frac{1}{6},\ldots,\frac{1}{6}\right)$$

in probability. By the CLT, as  $n \to \infty$ ,

$$\sqrt{n}\left(\frac{Y_1}{n}-\frac{1}{6},\ldots,\frac{Y_6}{n}-\frac{1}{6}\right) \to \mathcal{N}(0,\Sigma)$$

in distribution, where

$$\Sigma = \begin{pmatrix} \frac{5}{36} & -\frac{1}{36} & \cdots & -\frac{1}{36} \\ -\frac{1}{36} & \frac{5}{36} & \cdots & -\frac{1}{36} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{36} & -\frac{1}{36} & \cdots & \frac{5}{36} \end{pmatrix} \in \mathbb{R}^{6 \times 6}.$$

(The negative values of  $\Sigma_{ij}$  for  $i \neq j$  mean  $Y_i$  and  $Y_j$  are, as expected, slightly anti-correlated.)

# Continuous mapping

The LLN and CLT can be used as building blocks to understand other statistics, via the **Continuous Mapping Theorem**:

#### Theorem

If  $T_n \to c$  in probability, then  $g(T_n) \to g(c)$  in probability for any continuous function g.

If  $T_n \to Z$  in distribution, then  $g(T_n) \to g(Z)$  in distribution for any continuous function g.

(These hold in both the univariate and multivariate settings.)

Recall

$$nT_n = n\left(\frac{Y_1}{n} - \frac{1}{6}\right)^2 + \ldots + n\left(\frac{Y_6}{n} - \frac{1}{6}\right)^2.$$

The function  $g(x_1, \ldots, x_6) = x_1^2 + \ldots + x_6^2$  is continuous, so

$$nT_n \rightarrow Z_1^2 + \ldots + Z_6^2.$$

in distribution, where  $(Z_1,\ldots,Z_6)\sim \mathcal{N}(0,\Sigma).$ 

Hence, when *n* is large, the distribution of  $T_n$  is approximately that of  $\frac{1}{n}(Z_1^2 + \ldots + Z_6^2)$ .

Recall

$$nT_n = n\left(\frac{Y_1}{n} - \frac{1}{6}\right)^2 + \ldots + n\left(\frac{Y_6}{n} - \frac{1}{6}\right)^2.$$

The function  $g(x_1, \ldots, x_6) = x_1^2 + \ldots + x_6^2$  is continuous, so

$$nT_n \to Z_1^2 + \ldots + Z_6^2.$$

in distribution, where  $(Z_1,\ldots,Z_6)\sim \mathcal{N}(0,\Sigma).$ 

Hence, when *n* is large, the distribution of  $T_n$  is approximately that of  $\frac{1}{n}(Z_1^2 + \ldots + Z_6^2)$ .

Finally, what is the distribution of  $Z_1^2 + \ldots + Z_6^2$ ?

Using bilinearity of covariance, it is easy to show that if

$$W_1,\ldots,W_6 \stackrel{ID}{\sim} \mathcal{N}(0,1),$$

then

$$rac{1}{\sqrt{6}}(W_1-ar W,\ldots,W_6-ar W)\sim\mathcal{N}(0,\Sigma).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Here  $\bar{W} = \frac{1}{6}(W_1 + \ldots + W_6)$ .)

Using bilinearity of covariance, it is easy to show that if

$$W_1,\ldots,W_6 \stackrel{HD}{\sim} \mathcal{N}(0,1),$$

then

$$rac{1}{\sqrt{6}}(W_1-ar{W},\ldots,W_6-ar{W})\sim\mathcal{N}(0,\Sigma).$$
  
(Here  $ar{W}=rac{1}{6}(W_1+\ldots+W_6).$ )

So 
$$Z_1^2+\ldots+Z_6^2$$
 has the same distribution as $rac{1}{6}\left((W_1-ar W)^2+\ldots+(W_6-ar W)^2
ight)$ 

This is the sample variance of 6 IID standard normals, which we will show next week has distribution  $\frac{1}{6}\chi_5^2$ .

.

Conclusion:  $T_n$  has approximate distribution  $\frac{1}{6n}\chi_5^2$ .

Here's our simulated histogram of  $T_n$ , overlaid with the (appropriately rescaled) PDF of the  $\frac{1}{5n}\chi_5^2$  distribution:



Histogram of T

т

(日)、

э