
STATS 200: Introduction to Statistical Inference
Lecture 5: Testing a simple null hypothesis



Statistical inference = Probability−1

Today: Does my data come from a prescribed distribution, F?
This is oftentimes called testing goodness of fit.

Example: You roll a 6-sided die n times, and observe
1, 3, 1, 6, 4, 2, 5, 3, . . . Is this a fair die?



Example: Einstein’s theory of Brownian motion

Motion of a tiny (radius ≈ 10−4 cm) particle suspended in water:



Example: Einstein’s theory of Brownian motion

Albert Einstein (1905): Pt+∆t ∼ N
(
Pt ,

(
σ2 0
0 σ2

))
, where

σ2 =
RT

3πηrNA
(∆t).

I Pt : position of particle at time t

I R: ideal gas constant

I T : absolute temperature

I η: viscosity of water

I r : radius of particle

I NA: Avogadro’s number

Jean Perrin (1909): Measured the position of a particle every 30
seconds to verify Einstein’s theory (and to compute NA). For his
experiment, σ2 = 2.23× 10−7 cm2.

Does Perrin’s data fit with Einstein’s model?



Example: Einstein’s theory of Brownian motion

Albert Einstein (1905): Pt+∆t ∼ N
(
Pt ,

(
σ2 0
0 σ2

))
, where

σ2 =
RT

3πηrNA
(∆t).

I Pt : position of particle at time t

I R: ideal gas constant

I T : absolute temperature

I η: viscosity of water

I r : radius of particle

I NA: Avogadro’s number

Jean Perrin (1909): Measured the position of a particle every 30
seconds to verify Einstein’s theory (and to compute NA). For his
experiment, σ2 = 2.23× 10−7 cm2.

Does Perrin’s data fit with Einstein’s model?



Null and alternative hypotheses

A hypothesis test is a binary question about the data distribution.
Our goal is to either accept a null hypothesis H0 (which specifies
something about this distribution) or to reject it in favor of an
alternative hypothesis H1.

If H0 (similarly H1) completely specifies the probability distribution
for the data, then the hypothesis is simple. Otherwise it is
composite.

Today we’ll focus on testing simple null hypotheses H0.



Simple vs. composite

Example: Let X1, . . . ,X6 be the number of times we obtain 1 to 6
in n dice rolls. This null hypothesis is simple:

H0 : (X1, . . . ,X6) ∼ Multinomial
(
n,
(

1
6 , . . . ,

1
6

))
.

We might wish to test this null hypothesis against the simple
alternative hypothesis

H1 : (X1, . . . ,X6) ∼ Multinomial
(
n,
(

1
9 ,

1
9 ,

1
9 ,

2
9 ,

2
9 ,

2
9

))
,

or perhaps against the compositive alternative hypothesis

H1 : (X1, . . . ,X6) ∼ Multinomial(n, (p1, . . . , p6))

for some (p1, . . . , p6) 6=
(

1
6 , . . . ,

1
6

)
.
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Simple vs. composite

Example: Let (X1,Y1), (X2,Y2), (X3,Y3), . . . be the displacement
vectors P30 − P0,P60 − P30,P90 − P60, . . . where Pt ∈ R2 is the
position of a particle at time t in Perrin’s experiment. Einstein’s
theory corresponds to the simple null hypothesis

H0 : (X1,Y1), . . . , (Xn,Yn)
IID∼ N (0, 2.23× 10−7I ).

To test the theory qualitatively, but possibly allow for an error in
Einstein’s formula for σ2, we might test the composite null
hypothesis

H0 : (X1,Y1), . . . , (Xn,Yn)
IID∼ N (0, σ2I ) for some σ2 > 0.

One can pose a number of different possible alternative hypotheses
H1 to the above nulls.



Test statistics

A test statistic T := T (X1, . . . ,Xn) is any statistic such that
extreme values (large or small) of T provide evidence against H0.

Example: Let X1, . . . ,X6 count the results from n dice rolls, and let

T =

(
X1

n
− 1

6

)2

+ . . .+

(
X6

n
− 1

6

)2

.

Large values of T provide evidence against the null hypothesis of a
fair die,

H0 : (X1, . . . ,X6) ∼ Multinomial
(
n,
(

1
6 , . . . ,

1
6

))
.



Test statistics

Example: Let (X1,Y1), . . . , (Xn,Yn) be the displacements from
Perrin’s experiment. For testing

H0 : (X1,Y1), . . . , (Xn,Yn)
IID∼ N (0, 2.23× 10−7I ).

the following are possible test statistics:

X̄ =
1

n
(X1 + . . .+ Xn)

Ȳ =
1

n
(Y1 + . . .+ Yn)

V =
1

n
(X 2

1 + Y 2
1 + . . .+ X 2

n + Y 2
n )

(Values of X̄ or Ȳ much larger or smaller than 0, or values of V
much larger or smaller than 2× 2.23× 10−7, provide evidence
against H0 in favor of various alternatives H1.)



Test statistics from histograms

Let Ri = X 2
i + Y 2

i . Suppose we are interested in testing whether
R1, . . . ,Rn are distributed as 2.23× 10−7χ2

2 (their distribution
under H0). We can plot a histogram of these values:
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Test statistics from histograms

Deviations from 2.23× 10−7χ2
2 are better visualized by a hanging

histogram, which plots Oi − Ei where Oi is the observed count for
bin i and Ei is the expected count under the 2.23× 10−7χ2

2

distribution:

Hanging histogram of X^2+Y^2
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A test statistic can be T =
∑6

i=1(Oi − Ei )
2.



Test statistics from histograms

Problem: Let pi be the probability that the hypothesized
chi-squared distribution assigns to bin i . If H0 were true, then
Oi ∼ Binomial(n, pi ) and Ei = npi = E[Oi ]. So

Var[Oi ] = E[(Oi − Ei )
2] = npi (1− pi ).

The variation in Oi is smaller, and scales approximately linearly
with pi , if pi is close to 0. This might explain why the bars were
smaller on the right side of the hanging histogram.

Solution: We can “stabilize the variance” by looking at
Oi−Ei√

Ei
= Oi−Ei√

npi
.

Or alternatively, we can look at
√
Oi −

√
Ei . (Taylor expansion of√

x around x = Ei yields
√
Oi −

√
Ei ≈ 1

2
√
Ei

(Oi − Ei ), so this has

a similar effect as Oi−Ei

2
√
Ei

when Oi − Ei is small.)
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Test statistics from histograms

The hanging chi-gram plots Oi−Ei√
Ei

:

Hanging chi−gram of X^2+Y^2
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The test statistic T =
∑6

i=1
(Oi−Ei )

2

Ei
is called Pearson’s

chi-squared statistic for goodness of fit.



Test statistics from histograms

Tukey’s hanging rootogram plots
√
Oi −

√
Ei :

Hanging rootogram of X^2+Y^2
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We may take as test statistic T =
∑6

i=1(
√
Oi −

√
Ei )

2.



Test statistics from QQ plots

A QQ plot (or probability plot) compares the sorted values of
R1, . . . ,Rn with the 1

n+1 ,
2

n+1 , . . . ,
n

n+1 quantiles of the

hypothesized 2.23× 10−7χ2
2 distribution:
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Values close to the line y = x indicate a good fit.



Test statistics from QQ plots

How do we get a test statistic from a QQ plot? One way is to take
the maximum vertical deviation from the y = x line: Let
R(1) < . . . < R(n) be the sorted values of R1, . . . ,Rn. Take

T =
n

max
i=1

∣∣∣∣R(i) − F−1

(
i

n + 1

)∣∣∣∣ ,
where F is the CDF of the 2.23× 10−7χ2

2 distribution so F−1(t) is
its tth quantile.

Problem: For values of R where the distribution has high density,
the quantiles are closer together, so we expect a smaller vertical
deviation. This explains why we see more vertical deviation in the
upper right of the last QQ plot.
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Test statistics from QQ plots

Solution: We may stabilize the spacings between quantiles by
considering instead

T =
n

max
i=1

∣∣∣∣F (R(i))− i

n + 1

∣∣∣∣ .

This is almost the same as the one-sample Kolmogorov-Smirnov
(K-S) statistic,

TKS =
n

max
i=1

max

(∣∣∣∣F (R(i))− i

n

∣∣∣∣ , ∣∣∣∣F (R(i))− i − 1

n

∣∣∣∣) .
(You can show i−1

n < i
n+1 <

i
n , and the difference between T and

TKS is negligible for large n.)
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Null distributions and type I error

Supposing that we’ve picked our test statistic T , how large (or
small) does T need to be, before we can safely assert that H0 is
false?

In most cases we can never be 100% sure that H0 is false. But we
can compute T from the observed data and compare with the
sampling distribution of T if H0 were true. This is called the null
distribution of T .

Example: Consider

H0 : (X1,Y1), . . . , (Xn,Yn)
IID∼ N (0, 2.23× 10−7I ).

Under H0, X̄ ∼ N (0, 2.23× 10−7/n). This normal distribution is
the null distribution of X̄ .
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Null distributions and type I error

Here’s the PDF for the null distribution of X̄ , when n = 30:
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If, for the observed data, X̄ = 0.5× 10−4, this would not provide
strong evidence against H0. In this case we might accept H0.
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If, for the observed data, X̄ = 2.5× 10−4, this would provide
strong evidence against H0. In this case we might reject H0.



Null distributions and type I error

The rejection region is the set of values of T for which we choose
to reject H0. The acceptance region is the set of values of T for
which we choose to accept H0.

We choose the rejection region so as to control the probability of
type I error:

α = PH0 [reject H0]

This value α is also called the significance level of the test.

If, under its null distribution, T belongs to the rejection region
with probability α, then the test is level-α.

(Notation: For a simple null hypothesis H0, we write PH0 [E ] to
denote the probability of event E under H0, i.e. the probability of E
if H0 were true.)



Null distributions and type I error
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Example: A (two-sided) level-α test might reject H0 when X̄ falls
in the above shaded regions. Mathematically, let z(α) denote the
1− α quantile, or “upper α point”, of the distribution N (0, 1). As
X̄ ∼ N (0, σ2/n) under H0 (where σ2 = 2.23× 10−7), the rejection
region should be (−∞,− σ√

n
× z(α/2)] ∪ [ σ√

n
× z(α/2),∞).



P-values

The ppp-value is the smallest significance level at which your test
would have rejected H0.

For a one-sided test that rejects for large T , letting tobs denote the
value of T computed from the observed data, the p-value is
PH0 [T ≥ tobs].

For a two-sided test that rejects at the α/2 and 1− α/2 quantiles
of the null distribution of T , the p-value is 2 times the smaller of
PH0 [T ≥ tobs] and PH0 [T ≤ tobs].

The p-value provides a quantitative measure of the extent to which
the data supports (or does not support) H0. It is preferable to
report the exact p-value, rather than to just say “we rejected at
level-0.05”.



A word of caution

Accepting (or failing to reject) H0 does not imply there is strong
evidence that H0 is true. Both of the following are possible:

I The particular test statistic you chose is not good at
distinguishing the null hypothesis H0 from the true
distribution. Or equivalently, the true distribution is not
well-captured by the alternative H1 that your test statistic is
targeting. (For example, in Perrin’s data, if there is significant
drift in the y direction, you would not detect this using the
test statistic X̄ .)

I You do not have enough data to reject H0 at the significance
level that you desire. In this case your study might be
underpowered—we’ll discuss this issue a couple weeks from
now.



Determining the null distribution

To figure out the rejection region, we must understand the null
distribution of the test statistic. There are three methods:

I Sometimes we can derive the null distribution exactly, for
example in the previous slides where the test statistic is X̄ and
X1, . . . ,Xn are normally distributed under H0.

I Sometimes we can derive an asymptotic approximation, using
tools such as the CLT and continuous mapping theorem.

I When H0 is simple, we can always obtain the null distribution
by simulation.



Using an asymptotic null distribution

Example: Let (X1, . . . ,X6) denote the counts of 1 to 6 from n rolls
of a die, and consider testing the simple null of a fair die

H0 : (X1, . . . ,X6) ∼ Multinomial
(
n,
(

1
6 , . . . ,

1
6

))
using the test statistic

T =

(
X1

n
− 1

6

)2

+ . . .+

(
X6

n
− 1

6

)2

.

Recall from last lecture that for large n, T is approximately
distributed as 1

6nχ
2
5.

To perform an asymptotic level-ααα test, we may reject H0 when
tobs exceeds 1

6nχ
2
5(α), where χ2

n(α) denotes the 1− α quantile, or
“upper α point”, of the χ2

n distribution.



Using a simulated null distribution

Example: Let T be Pearson’s chi-squared statistic for goodness of
fit for the values X 2

1 + Y 2
1 , . . . ,X

2
30 + Y 2

30 from Perrin’s
experiments, discussed previously. We may simulate the null
distribution of T :

Histogram of T

T

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

20
0

30
0

This shows the 1000 values of T across 1000 simulations. The
observed value tobs = 2.83 for Perrin’s real data is in red.



Using a simulated null distribution

Example: Let T be the K-S statistic for X 2
1 + Y 2

1 , . . . ,X
2
30 + Y 2

30,
discussed previously. We may simulate the null distribution of T :
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The observed value tobs = 0.132 for Perrin’s real data is in red.



Using a simulated null distribution

We obtain an approximate p-value as the fraction of simulated
values of T larger than tobs. (For a two-sided test, we would take
either the fraction of simulated values of T larger than tobs or
smaller than tobs, and multiply this by 2.)

For Perrin’s data, the Pearson chi-squared p-value is 0.754, and
the K-S p-value is 0.612. We accept H0 in both cases, and neither
test provides significant evidence against Einstein’s theory of
Brownian motion.


