
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 6 — Simple alternatives and the Neyman-Pearson lemma

Last lecture, we discussed a number of ways to construct test statistics for testing a simple
null hypothesis, and we showed how to use the null distribution of the statistic to determine
the rejection region so as to achieve a desired significance level. The goal of today’s lecture
is to answer the following question: Which test statistic should we use? The answer depends
on the alternative hypothesis that we wish to distinguish from the null.

6.1 The Neyman-Pearson lemma

Let’s focus on the problem of testing a simple null hypothesis H0 against a simple alternative
hypothesis H1. We denote by

β = PH1 [accept H0]

the probability of type II error—accepting the null H0 when in fact the alternative H1 is
true. (Here, PH1 [E ] denotes probability of an event E if H1 is true.) Equivalently,

1− β = PH1 [reject H0]

is the probability of correctly rejecting H0 when H1 is true, which is called the power of the
test against H1.

1

When designing a hypothesis test for testing H0 versus H1, we have the following goal:

maximize: the power of the test against H1

subject to: the significance level of the test under H0 is at most α

This is an example of a constrained optimization problem, which we can reason about in
the following way: Suppose we observe data which are realizations of random variables
X1, . . . , Xn. For notational convenience, let us denote by X = (X1, . . . , Xn) the entire data
vector, and by x = (x1, . . . , xn) a vector of possible values for X. In the discrete case,
suppose the hypotheses are

H0 : X is distributed with joint PMF f0(x) := f0(x1, . . . , xn),

H1 : X is distributed with joint PMF f1(x) := f1(x1, . . . , xn).

Let X denote the set of all possible values of X under f0 and f1. To define the hypothesis
test, for each x ∈ X , we must specify whether to accept or reject H0 if the observed data
is x. In other words, we specify a rejection region R ⊂ X such that we reject H0 if the
observed data belongs to R and we accept H0 otherwise. Then the probability of rejecting

1Caution: Some books/papers use opposite notation and let β denote the power and 1 − β denote the
probability of type II error. Make sure to double-check the meaning of the notation.
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H0 if H0 were true would be
∑

x∈R f0(x), the probability of rejecting H0 if H1 were true
would be

∑
x∈R f1(x), and the above optimization problem is formalized as choosing the

rejection region R ⊂ X with the goal

maximize
∑
x∈R

f1(x)

subject to
∑
x∈R

f0(x) ≤ α.

The continuous case is similar: suppose the hypotheses are

H0 : X is distributed with joint PDF f0(x) := f0(x1, . . . , xn),

H1 : X is distributed with joint PDF f1(x) := f1(x1, . . . , xn).

We define a hypothesis test by defining the region R ⊂ Rn such that we reject H0 if and only
if the observed data x belongs to R. The above optimization problem is to choose R ⊂ Rn

with the goal

maximize

∫
R
f1(x) dx1 . . . dxn

subject to

∫
R
f0(x) dx1 . . . dxn ≤ α.

In either the discrete or continuous case, what are the best points x to include in this
rejection region R? A moment’s thought should convince you that R should consist of those
points x corresponding to the smallest values of f0(x)

f1(x)
, as these give the “smallest increase in

type I error per unit increase of power”. Another interpretation is that these are the points
providing the strongest evidence in favor of H1 over H0. The statistic

L(X) =
f0(X)

f1(X)

is called the likelihood ratio statistic, and the test that rejects for small values of L(X)
is called the likelihood ratio test. The Neyman-Pearson lemma shows that the likelihood
ratio test is the most powerful test of H0 against H1:

Theorem 6.1 (Neyman-Pearson lemma). Let H0 and H1 be simple hypotheses (in which the
data distributions are either both discrete or both continuous). For a constant c > 0, suppose
that the likelihood ratio test which rejects H0 when L(x) < c has significance level α. Then
for any other test of H0 with significance level at most α, its power against H1 is at most
the power of this likelihood ratio test.

Proof. Consider the discrete case, and let R = {x : L(x) < c} be the rejection region of the
likelihood ratio test. Note that among all subsets of X , R maximizes the quantity∑

x∈R

(cf1(x)− f0(x)) ,
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because cf1(x)−f0(x) > 0 for x ∈ R and cf1(x)−f0(x) ≤ 0 for x /∈ R. Hence for any other
test with significance level at most α, say with rejection region R′,∑

x∈R

(cf1(x)− f0(x)) ≥
∑
x∈R′

(cf1(x)− f0(x)) .

Rearranging the above, this implies

c

(∑
x∈R

f1(x)−
∑
x∈R′

f1(x)

)
≥
∑
x∈R

f0(x)−
∑
x∈R′

f0(x) = α−
∑
x∈R′

f0(x) ≥ 0,

where the last inequality follows because
∑

x∈R′ f0(x) is the significance level of the test that
rejects for x ∈ R′. Then

∑
x∈R f1(x) ≥

∑
x∈R′ f1(x), i.e. the likelihood ratio test has power

at least that of this other test. The proof in the continuous case is exactly the same, with
all sums above replaced by integrals over R and R′.

6.2 Examples

Let’s work out what the likelihood ratio test actually is for two simple examples.

Example 6.2. Consider data X1, . . . , Xn and the following null and alternative hypotheses:

H0 : X1, . . . , Xn
IID∼ N (0, 1)

H1 : X1, . . . , Xn
IID∼ N (µ, 1)

Here we assume µ is a known, specified value (not equal to 0), so that H1 is a simple
alternative hypothesis. The joint PDF of (X1, . . . , Xn) under H0 is

f0(x1, . . . , xn) =
n∏

i=1

1√
2π
e−

x2i
2 =

(
1√
2π

)n

exp

(
−x

2
1 + . . .+ x2n

2

)
.

The joint PDF under H1 is

f1(x1, . . . , xn) =
n∏

i=1

1√
2π
e−

(xi−µ)
2

2 =

(
1√
2π

)n

exp

(
−(x1 − µ)2 + . . .+ (xn − µ)2

2

)
.

Thus, the likelihood ratio statistic is

L(X1, . . . , Xn) =
f0(X1, . . . , Xn)

f1(X1, . . . , Xn)
= exp

(
−X

2
1 + . . .+X2

n

2
+

(X1 − µ)2 + . . .+ (Xn − µ)2

2

)
.

Expanding the squares and simplifying, we obtain

L(X1, . . . , Xn) = exp

(
−2µ(X1 + . . .+Xn) + nµ2

2

)
.

6-3



Suppose first that µ > 0. Then L(X1, . . . , Xn) is a strictly decreasing function of the
sample mean X̄ = 1

n
(X1 + . . . + Xn). Hence, rejecting for small values of L(X1, . . . , Xn) is

the same as rejecting for large values of X̄. So the Neyman-Pearson lemma tells us that the
most powerful test should reject when X̄ > c, for some threshold c. We pick c to ensure
that the significance level is α under H0: Since the null distribution of X̄ is X̄ ∼ N (0, 1

n
), c

should be the 1√
n
z(α) where z(α) is the “upper α point” of the standard normal distribution.

Now suppose that µ < 0. Then L(X1, . . . , Xn) is strictly increasing in X̄, so rejecting for
small L(X1, . . . , Xn) is the same as rejecting for small X̄. By the same argument as above,
to ensure significance level α, the most powerful test rejects when X̄ < − 1√

n
z(α).

Remark 6.3. The most powerful test against the alternative H1 : X1, . . . , Xn ∼ N (µ, 1)
is the same for any µ > 0 (rejecting when X̄ > 1√

n
z(α)), and neither the test statistic nor

the rejection region depend on the specific value of µ. This means that, in fact, this test is
uniformly most powerful against the (one-sided) composite alternative

H1 : X1, . . . , Xn
IID∼ N (µ, 1) for some µ > 0.

On the other hand, the most powerful test is different for µ > 0 versus for µ < 0: one
test rejects for large positive values of X̄, and the other rejects for large negative values of
X̄. This implies that there does not exist a single most powerful test for the (two-sided)
composite alternative

H1 : X1, . . . , Xn
IID∼ N (µ, 1) for some µ 6= 0.

Example 6.4. Let X1, . . . , Xn ∈ {0, 1} be the results of n flips of a coin, and consider the
following null and alternative hypotheses:

H0 : X1, . . . , Xn
IID∼ Bernoulli

(
1
2

)
H1 : X1, . . . , Xn

IID∼ Bernoulli(p).

Here we assume that p 6= 1
2

is a known and specified value, so H1 is simple. The joint PMF
of (X1, . . . , Xn) under H0 and H1 are, respectively,

f0(x1, . . . , xn) =
n∏

i=1

1

2
=

1

2n
,

f1(x1, . . . , xn) =
n∏

i=1

pxi(1− p)1−xi = px1+...+xn(1− p)n−x1−...−xn = (1− p)n
(

p

1− p

)x1+...+xn

.

Thus, the likelihood ratio statistic is

L(X1, . . . , Xn) =
f0(X1, . . . , Xn)

f1(X1, . . . , Xn)
=

1

2n(1− p)n

(
1− p
p

)X1+...+Xn

.

First suppose p > 1
2
. Then L(X1, . . . , Xn) is a decreasing function of S = X1 + . . .+Xn,

so rejecting for small values of L(X1, . . . , Xn) is the same as rejecting for large values of S.
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Hence, by the Neyman-Pearson lemma, the most powerful test rejects when S > c for a
constant c. We choose c to ensure significance level α: Under H0, S ∼ Binomial(n, 1

2
), so c

should be the 1− α quantile of the Binomial(n, 1
2
) distribution. This test is the same for all

p > 1
2
, so it is in fact uniformly most powerful against the composite alternative

H1 : X1, . . . , Xn
IID∼ Bernoulli(p) for some p > 1

2
.

For p < 1
2
, L(X1, . . . , Xn) is increasing in S, so the most powerful test rejects for S < c

and some constant c. To ensure significance level α, c should be the α quantile of the
Binomial(n, 1

2
) distribution. This test is the same for all p < 1

2
, so it is uniformly most

powerful against the compositive alternative

H1 : X1, . . . , Xn
IID∼ Bernoulli(p) for some p < 1

2
.

Remark 6.5. We have glossed over a detail, which is that when the distribution of the
likelihood ratio statistic L(X) is discrete under H0, it might not be possible to choose c so
that the significance level is exactly α. For instance, in the previous example, suppose we
wish to achieve significance level α = 0.05, and n = 20. For S ∼ Binomial(20, 1

2
), we have

P[S ≥ 15] = 0.021 and P[S ≥ 14] = 0.058. So if we reject H0 when S ≥ 14, we do not achieve
significance level ≤ α, and if we reject H0 when S ≥ 15, then we are too conservative.

The theoretically correct solution is to perform a randomized test: Always reject H0

when S ≥ 15, always accept H0 when S ≤ 13, and reject H0 with a certain probability
when S = 14, where this probability is chosen to make the significance level exactly α. A
more complete statement of the Neyman-Pearson lemma shows that this type of (possibly
randomized) likelihood ratio test is most powerful among all randomized tests.

In practice, it might not be acceptable to use a randomized test. (We found the effects
of this drug to be statistically significant because our statistical procedure told us to flip a
coin, and our coin landed heads...) So we might take the more conservative option of just
rejecting H0 when S ≥ 15.
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