
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 7 — Composite hypotheses and the t-test

7.1 Composite null and alternative hypotheses

This week we will discuss various hypothesis testing problems involving a composite null
hypothesis and a compositive alternative hypothesis. To motivate the discussion, consider
the following examples:

Example 7.1. There are 80 students in a STATS 200 class. A diagnostic exam is adminis-
tered at the start of the quarter, and a comparable exam is administered at the end of the
quarter. Did STATS 200 improve students’ knowledge of statistics?

Let Xi be the difference in test scores for student i. There are various ways we can
formulate the above question as a hypothesis test: If we believe a normal model for the Xi’s,

X1, . . . , X80
IID∼ N (µ, σ2), then we might formulate our question as the testing problem

H0 : µ = 0

H1 : µ > 0

Note that both the null and alternative hypotheses above are composite, because they do
not specify the variance σ2 (which is unknown). If we are not willing to make a normality
assumption, we might assume instead that X1, . . . , X80 are IID with PDF f , and test

H0 : f is symmetric around 0

H1 : f is symmetric around µ for some µ > 0

or maybe even drop the symmetry assumptions and test

H0 : f has median 0

H1 : f has median µ for some µ > 0

Which formulation we choose and the resulting test statistic we use may depend on our prior
knowledge of how test scores are typically distributed and on visual inspection of the data
(for departures from normality, symmetry, etc.)

Example 7.2. A friend criticizes the setup of the previous example: It’s hard to make two
exams that are equally difficult. What if the second exam just happened to be a bit easier?

To address this criticism, we add a control group: We give 100 other students (who are
not taking statistics courses this quarter) the same two exams at the start and end of the
quarter. Let Yi be the difference in test scores for student i of this control group. Again, if
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we believe a normal model X1, . . . , X80
IID∼ N (µX , σ

2) and Y1, . . . , Y100
IID∼ N (µY , σ

2) (with
the X’s also independent of the Y ’s), then we might formulate the test as

H0 : µX = µY

H1 : µX > µY

If we are not willing to assume normality, we might suppose instead that X1, . . . , X80 are
IID with PDF f and Y1, . . . , Y100 are IID with PDF g, and test

H0 : f = g

H1 : f stochastically dominates g

(This alternative H1 means that if X ∼ f and Y ∼ g, then P[X ≥ x] ≥ P[Y ≥ x] for all
x ∈ R.) Again, how we formulate the testing problem depends on the modeling assumptions
we are willing to make.

When testing a composite null hypothesis H0 against a compositive alternative H1, there
is a probability of type I error associated to each data distribution P ∈ H0 (the probability
of rejecting H0 if the true distribution were P ) and a probability of type II error associated
to each data distribution P ∈ H1 (the probability of accepting H0 if the true distribution
were P ). A test has significance level α if the maximum probability of type I error for any
P ∈ H0 is α.

This means that to design a level-α test of H0, we need to control the probability of
type I error for every P ∈ H0, and hence reason about the sampling distribution of our test
statistic T under every such data distribution P . In general this can be very difficult, and
a common simplifying strategy will be to find a test statistic T that has the same sampling
distribution under every P ∈ H0.

7.2 One-sample t-test

Assume X1, . . . , Xn
IID∼ N (µ, σ2) for unknown µ and σ2, and consider testing

H0 : µ = 0

H1 : µ > 0

If σ2 were fixed and known, then the uniformly most-powerful level-α test would reject

for large values of X̄. Specifically, it would reject when
√
nX̄
σ

> z(α) (because when

X1, . . . , Xn
IID∼ N (0, σ2), X̄ ∼ N (0, σ

2

n
) so

√
nX̄
σ
∼ N (0, 1)).

When σ2 is unknown, a natural idea is to estimate σ2 by the sample variance

S2 =
1

n− 1

(
(X1 − X̄)2 + . . .+ (Xn − X̄)2

)
,

and to consider the test statistic

T =

√
nX̄

S
.

To derive the distribution of T under H0, we first prove the following result:
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Theorem 7.3. Let X1, . . . , Xn
IID∼ N (µ, σ2), and let X̄ and S2 be the sample mean and

sample variance (where S2 is defined as above). Then S2 is independent of X̄ and distributed
as S2 ∼ σ2

n−1
χ2
n−1.

Proof. Note that changing the mean µ does not affect the distribution of S2 and shifts the
distribution of X̄ by a constant value, which does not affect independence of S2 and X̄. So
we may assume without loss of generality µ = 0.

We first show independence of S2 and X̄. The entries of

(X̄,X1 − X̄, . . . , Xn − X̄)

are linear combinations of X1, . . . , Xn, so (X̄,X1−X̄, . . . , Xn−X̄) has a multivariate normal
distribution by Example 3.4 of Lecture 3. Let’s compute

Cov[X̄,X1 − X̄] = Cov[X̄,X1]− Cov[X̄, X̄].

By bilinearity of covariance and the fact that Cov[Xj, X1] = 0 for all j ≥ 2,

Cov[X̄,X1] = Cov

[
1

n

n∑
j=1

Xj, X1

]
=

1

n

n∑
j=1

Cov[Xj, X1] =
1

n
Cov[X1, X1] =

1

n
Var[X1] =

σ2

n
.

Since X̄ ∼ N (0, σ
2

n
), Cov[X̄, X̄] = Var[X̄] = σ2

n
also. Then

Cov[X̄,X1 − X̄] = 0.

Similarly Cov[X̄,Xi − X̄] = 0 for every i = 2, . . . , n. By Theorem 3.5 from Lecture 3, this
means X̄ is independent of (X1 − X̄, . . . , Xn − X̄), and so X̄ is independent of S2.

To compute the distribution of S2, we may write

(n− 1)S2 = (X1 − X̄)2 + . . .+ (Xn − X̄)2

= (X2
1 − 2X1X̄ + X̄2) + . . .+ (X2

n − 2XnX̄ + X̄2)

= X2
1 + . . .+X2

n − 2(X1 + . . .+Xn)X̄ + nX̄2

= (X2
1 + . . .+X2

n)− 2nX̄2 + nX̄2

= (X2
1 + . . .+X2

n)− nX̄2.

Letting U = (n−1)S2/σ2, W = (X2
1 + . . .+X2

n)/σ2, and V = nX̄2/σ2, this says W = U+V .
We showed S2 is independent of X̄, hence U is independent of V . Thus the MGF of W is
the product of the MGFs of U and V :

MW (t) = MU(t)MV (t).

Finally, note that each Xi/σ ∼ N (0, 1), so W ∼ χ2
n. Also,

√
nX̄/σ ∼ N (0, 1), so V =

(
√
nX̄/σ)2 ∼ χ2

1. This means that the MGF of U is, for any t < 1
2
,

MU(t) =
MW (t)

MV (t)
=

(1− 2t)−n/2

(1− 2t)−1/2
= (1− 2t)−(n−1)/2,

which is the MGF of the χ2
n−1 distribution. So U ∼ χ2

n−1, and S2 ∼ σ2

n−1
χ2
n−1.
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Remark 7.4. At the end of Lecture 4, we claimed if W1, . . . ,W6
IID∼ N (0, 1), then (W1 −

W̄ )2 + . . . + (W6 − W̄ )2 ∼ χ2
5. The above theorem verifies this. The theorem also explains

why we often define S2 with the normalization 1
n−1

rather than 1
n
: As the expectation of a

χ2
n−1 random variable is n− 1, E[S2] = σ2 so S2 is an unbiased estimator for σ2.

Returning to our test statistic

T =

√
nX̄

S
=

√
nX̄/σ

S/σ
,

we observe that by Theorem 7.3, for µ = 0 and any value of σ2 > 0,

√
nX̄

σ
∼ N (0, 1),

S2

σ2
∼ 1

n− 1
χ2
n−1,

and these are independent. Hence the distribution of T does not depend on σ, so it is the
same under all P ∈ H0. We give this distribution a name:

Definition 7.5. If Z ∼ N (0, 1), U ∼ χ2
n, and Z and U are independent, then the distribution

of Z/
√

1
n
U is called the ttt distribution with nnn degrees of freedom, denoted tn.

So under H0,
T ∼ tn−1.

Letting tn−1(α) denote the upper α point (or 1 − α quantile) of the distribution tn−1, the
test that rejects for T > tn−1(α) is called the one-sample ttt-test.

Remark 7.6. The one-sample t-test is often used in paired two-sample settings, such as
Example 7.1. There, we actually have two paired samples—the before and after test scores
of each student—and we perform the test by first taking the differences of these paired
values. In such settings, the test is often called the paired two-sample ttt-test, although
the statistical procedure is really just a test for one set of IID observations.
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