
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 8 — Two-sample t-test and signed rank test

8.1 Two-sample t-test

Consider the setting of two independent samplesX1, . . . , Xn
IID∼ N (µX , σ

2) and Y1, . . . , Ym
IID∼

N (µY , σ
2), as in Example 7.2 of last lecture. Here µX , µY , σ

2 are all unknown; note that we
are assuming (for now) a common variance σ2 for both samples. For the testing problem

H0 : µX = µY

H1 : µX > µY

a natural idea is to reject H0 for large values of X̄ − Ȳ . Observe that X̄ ∼ N (µX ,
σ2

n
),

−Ȳ ∼ N (−µY , σ
2

m
), and these are independent. Then their sum is distributed1 as

X̄ − Ȳ ∼ N (µX − µY , σ
2

n
+ σ2

m
).

Under H0, µX − µY = 0, so (X̄ − Ȳ )/
√

σ2

n
+ σ2

m
∼ N (0, 1). If σ2 were known, then a level-α

test based on X̄ − Ȳ would reject when

X̄ − Ȳ√
σ2

n
+ σ2

m

> z(α).

Since σ2 is unknown, we estimate it from the data. We may use both the Xi’s and Yi’s to
estimate σ2 by taking the pooled sample variance

S2
p =

1

m+ n− 2

(
n∑
i=1

(Xi − X̄)2 +
m∑
j=1

(Yj − Ȳ )2

)
,

and take as a test statistic

T =
X̄ − Ȳ

Sp

√
1
n

+ 1
m

.

To derive the null distribution and rejection threshold for T , we may rewrite this as

T =
X̄ − Ȳ√
σ2

n
+ σ2

m

/√
S2
p/σ

2.

1Recall, as a special case of Example 3.3 from Lecture 3, that if X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2) are

independent, then X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2).
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By Theorem 7.3 of Lecture 7 (and by independence of the two samples), X̄, Ȳ ,
∑

i(Xi −
X̄)2,

∑
j(Yj− Ȳ )2 are all independent, with the last two quantities distributed as σ2χ2

n−1 and

σ2χ2
m−1. Then under H0,

X̄ − Ȳ√
σ2

n
+ σ2

m

∼ N (0, 1),
S2
p

σ2
∼ 1

m+ n− 2
χ2
m+n−2,

and these are independent. So the distribution of T is the same for all data distributions
P ∈ H0 and is given by

T ∼ tm+n−2.

The test that rejects H0 when T > tm+n−2(α) (the upper α point of the tm+n−2 distribution)
is called the two-sample ttt-test.

Remark 8.1. The assumption of common variance σ2 for the two samples is oftentimes

problematic (and violated) in practice. If we assume instead that X1, . . . , Xn
IID∼ N (µX , σ

2
X)

and Y1, . . . , Ym
IID∼ N (µY , σ

2
Y ) for possibly different values of σ2

X and σ2
Y , then Var(X̄− Ȳ ) =

1
n
σ2
X + 1

m
σ2
Y , and we may estimate this by 1

n
S2
X + 1

m
S2
Y , where S2

X and S2
Y are the sample

variances of the two samples. Then we may use the test statistic

Twelch =
X̄ − Ȳ√

1
n
S2
X + 1

m
S2
Y

.

The distribution of Twelch under H0 is no longer exactly a t distribution, but it was shown
by Welch (1947) to be close to the t distribution with

(S2
X/n+ S2

Y /m)2

(S2
X/n)2/(n− 1) + (S2

Y /m)2/(m− 1)

degrees of freedom. The test that rejects when Twelch exceeds the upper α point of this t
distribution is called Welch’s ttt-test or the unequal variances ttt-test.

8.2 Wilcoxon signed rank test

Let’s return to the one-sample setting X1, . . . , Xn
IID∼ f , where we drop the normality as-

sumption and only wish to test

H0 : f is symmetric about 0

H1 : f is symmetric about µ for some µ > 0

Because the shape of f is arbitrary under H0, the distribution of the t-statistic is no longer
the same under every data distribution P ∈ H0—in particular, it can be very far from tn−1 if
n is moderately small and f is heavy-tailed. We consider instead the signed rank statistic
W+, defined in the following way:
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1. Sort |X1|, |X2|, . . . , |Xn| in increasing order. Assign the smallest value (closest to zero)
a rank of 1, the next smallest value a rank of 2, etc., and the largest value a rank of n.

2. Define W+ as the sum of the ranks corresponding to only the positive values of
X1, . . . , Xn.

As an example, suppose we have four observations X1 = 2, X2 = −4, X3 = −1, X4 = 10.
Then the ranks of these four observations would be 2, 3, 1, 4. Observations X1 and X4 are
positive, so W+ = 2 + 4 = 6.

We expect W+ to be larger under H1 than under H0, because high-rank observations are
more likely to be positive under H1. The test that rejects for large W+ is called Wilcoxon’s
signed rank test. The following theorem states that W+ has the same distribution under
every P ∈ H0, and provides a method for determining the null distribution and rejection
threshold for W+ when n is large. (When n is small, we can determine the exact null
distribution of W+ by computing W+ for all 2n possible combinations of + and − signs for
the ranked data.)

Theorem 8.2. The distribution of W+ is the same for every PDF f that is symmetric about
0. For large n, this distribution is approximately N (n(n+1)

4
, n(n+1)(2n+1)

24
). (More formally,√

24
n(n+1)(2n+1)

(
W+ − n(n+1)

4

)
→ N (0, 1) in distribution as n→∞.)

Proof sketch. We’ll show that the distribution of W+ is the same for every f , and that
E[W+] = n(n+1)

4
and Var[W+] = n(n+1)(2n+1)

24
. We’ll provide only a heuristic explanation of

why W+ is asymptotically normal.
Let f0(x1, . . . , xn) =

∏n
i=1 f(xi) be the joint PDF of the data. By symmetry of f about

0, f0(±x1, . . . ,±xn) is the same for each of the 2n combinations of +/− signs. This implies,
conditional on |X1|, . . . , |Xn|, the signs of X1, . . . , Xn are independent and each equal to +
or − with probability 1

2
. Then, letting Ik = 1 if the value with rank k is positive and Ik = 0

if it is negative, I1, . . . , In
IID∼ Bernoulli(1

2
) for any PDF f that is symmetric about 0.

The signed rank statistic is

W+ =
n∑
k=1

kIk.

Since I1, . . . , In have the same distribution under any symmetric PDF f about 0, the distri-
bution of W+ is the same for all such PDFs f . We compute

E[W+] =
n∑
k=1

kE[Ik] =
1

2

n∑
k=1

k =
n(n+ 1)

4
,

Var[W+] =
n∑
k=1

Var[kIk] =
n∑
k=1

k2 Var[Ik] =
1

4

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

24
,

where the computation for variance uses that I1, . . . , In are independent.
To explain why W+ is approximately normally distributed, define the empirical CDF

of |X1|, . . . , |Xn| by

Fn(t) =
1

n

n∑
i=1

1{|Xi| ≤ t}.
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(Fn(t) is the fraction of values of |Xi| that are at most t.) Then the rank associated with Xi

is exactly nFn(|Xi|), so

W+ =
n∑
i=1

nFn(|Xi|)1{Xi > 0}.

When n is large, one may show that Fn(t) is, with high probabiliy, close to the true CDF
F (t) of |Xi| for every t ∈ R, and hence that the difference between W+ and

W̃+ =
n∑
i=1

nF (|Xi|)1{Xi > 0}

is negligible. But W̃ is just the sum of IID random variables Yi := nF (|Xi|)1{Xi > 0}, and
hence asymptotically normally distributed by the CLT.
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