
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 9 — Rank sum test and permutation tests

9.1 Rank sum test

The idea of converting observed data values to just their ranks, so as to deal with heavy-tailed
data and deviations from normality, can be extended to the two-sample setting. Consider

two independent samples X1, . . . , Xn
IID∼ f and Y1, . . . , Ym

IID∼ g, where f and g are two
arbitrary PDFs, and the testing problem

H0 : f = g

H1 : f stochastically dominates g

(Recall from Lecture 7 that this alternative is one way of saying that values drawn from f
“tend to be larger” than values drawn from g.)

The rank-sum statistic TY is defined as follows:

1. Consider the pooled sample of all observations X1, . . . , Xn, Y1, . . . , Ym. Sort these
m + n values in increasing order. Assign the smallest a rank of 1, the next smallest a
rank of 2, etc., and the largest a rank of m+ n.

2. Define TY as the sum of the ranks corresponding to only the Yi values, i.e. the values
from only the second sample.1

We expect TY to be smaller under H1 than under H0, because under H1 the values of Yi tend
to have smaller ranks. The test that rejects for small values of TY is called the Wilcoxon
rank-sum test, known alternatively as the Mann-Whitney U-test or the Mann-Whitney-
Wilcoxon test. (If we are testing a general two-sided alternative

H ′1 : f 6= g

then we would reject for both large and small values of TY .)
The following theorem states that TY has the same distribution under every P ∈ H0, and

provides a method for determining the null distribution and rejection threshold when n and
m are both large. (For small n and m, we can determine the exact null distribution of TY
by computing TY for all

(
n+m
m

)
possible sets of ranks for the Yi’s.)

Theorem 9.1. The distribution of TY is the same under any PDF f = g. For large n and
m, this distribution is approximately N (m(m+n+1)

2
, mn(m+n+1)

12
).

We won’t prove this result; let’s just make the following comments:

1One may consider equivalently TX (the sum of ranks of the Xi’s) as TX + TY is a fixed constant.
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• If f = g, then each ordering of X1, . . . , Xn, Y1, . . . , Ym is equally likely. Since TY
depends only on this ordering, its distribution must be the same under every PDF
f = g.

• Let Ik = 1 if the kth largest value in X1, . . . , Xn, Y1, . . . , Ym belongs to the second
sample, and Ik = 0 otherwise. Then

TY =
m+n∑
k=1

kIk.

Under H0, Ik indicates whether the kth “individual” is selected in a simple random
sample of size m (without replacement) from a population of size m+n. Then the same
computations as in Lecture 1 yield formulas for E[Ik], Var[Ik], and Cov[Ij, Ik]. Applying

linearity of expectation and bilinearity of covariance, we may obtain E[TY ] = m(m+n+1)
2

and Var[TY ] = mn(m+n+1)
12

as in the above theorem. (Details are provided in Rice,
Section 11.2.3 Theorem A and Section 7.3.1 Theorems A and B.)

9.2 Permutation and randomization tests

The main idea behind the (one-sample) signed-rank test and the (two-sample) rank-sum
test is to exploit a symmetry under H0. For the signed-rank test, the symmetry is that it is
equally likely to observe ±X1, . . . ,±Xn for each of the 2n combinations of +/− signs. For
the rank-sum test, the symmetry is that it is equally likely to observe each of the (m + n)!
permutations of the pooled sample X1, . . . , Xn, Y1, . . . , Ym.

In fact, this idea of exploiting symmetry provides an alternative (and useful) simulation-
based method of obtaining a null distribution for any test statistic T for these problems:

Example 9.2. Consider two samples X1, . . . , Xn and Y1, . . . , Ym, and any test statistic
T (X1, . . . , Xn, Y1, . . . , Ym). (For concreteness, you can think about T = X̄ − Ȳ .) For a
null hypothesis H0 which specifies that all data from both samples are IID from a common
distribution, for example

H0 : X1, . . . , Xn, Y1, . . . , Ym
IID∼ f

for an unknown PDF f , the permutation null distribution of T is the distribution of
T (X∗1 , . . . , X

∗
n, Y

∗
1 , . . . , Y

∗
m) when we fix the observed values X1, . . . , Xn, Y1, . . . , Ym and let

(X∗1 , . . . , X
∗
n, Y

∗
1 , . . . , Y

∗
m) be a permutation of X1, . . . , Xn, Y1, . . . , Ym chosen uniformly at

random from the set of all (m + n)! possible permutations. (For T = X̄ − Ȳ , what this
effectively means is that we randomly choose n of the observations to be X∗1 , . . . , X

∗
n, set the

remaining m observations to be Y ∗1 , . . . , Y
∗
m, and compute X̄∗ − Ȳ ∗.)

Under H0, each of these (m+n)! possible values of T is equally likely to be observed. To
perform a test that rejects for large values of T , we may use the following procedure:

1. Randomly permute the pooled data B times (say B = 10000), and compute the value
of T each time.
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2. Compute an approximate p-value as the fraction of the B simulations where we ob-
tained a value of T larger than tobs, the value for the original (unpermuted) data.
(Reject at level-α if this p-value is at most α.)

For a two-sided test that rejects for both large and small values of T , we can compute the
p-value by taking the fraction of simulations where T is larger than tobs or the fraction where
T is smaller than tobs (whichever is smaller) and multiply by 2.

This is called a permutation test based on T . It is an example of a conditional test,
because we are looking at the conditional distribution of the data under H0 given the set
(but not the ordering) of their values.

The utility of this idea is that it may be applied to test statistics T where we do not
understand its (unconditional) distribution under H0, and where this distribution may vary
for different PDFs f = g. Consider the following example:

Example 9.3. Let X1, . . . , Xn ∈ X and Y1, . . . , Ym ∈ X be two random samples of “objects”
(e.g. images, websites, documents) represented in some data space X . Suppose we have a
function d(x, y) that measures a “distance” between any two objects x, y ∈ X .

To test whether X1, . . . , Xn and Y1, . . . , Ym appear to come from the same distribution,
the following might be a reasonable test statistic:

T1 =
2

nm

n∑
i=1

m∑
j=1

d(Xi, Yj)−
1(
n
2

) ∑
1≤i<i′≤n

d(Xi, Xi′)−
1(
m
2

) ∑
1≤j<j′≤m

d(Yj, Yj′).

In words, T1 is twice the average distance between an object in sample 1 and an object in
sample 2, minus the average distance between two objects in sample 1 and minus the average
distance between two objects in sample 2. So T1 measures whether, on average, objects from
the same sample are more similar to each other than objects from different samples.

Or we might consider a “nearest-neighbors” statistic: For each of the m+ n data values,
look at the k other data values closest to it (as measured by the distance d) and count how
many of these come from the same sample as itself. Let T2 be the average of this count
across all m + n data points. So T2 measures whether the k closest other objects tend to
come from the same sample.

The distributions of T1 and T2 under H0 may be difficult to understand theoretically and
may depend on the unknown common distribution of X1, . . . , Xn, Y1, . . . , Ym, but we can still
carry out a permutation test based on T1 or on T2.

A similar idea may be applied in the one-sample setting for testing the null hypothesis

H0 : X1, . . . , Xn
IID∼ f, for some PDF f symmetric about 0

based on the symmetry underlying the Wilcoxon signed-rank test. You will explore this in
Homework 4.
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