9.1 Rank sum test

The idea of converting observed data values to just their ranks, so as to deal with heavy-tailed data and deviations from normality, can be extended to the two-sample setting. Consider two independent samples $X_1, \ldots, X_n \overset{IID}{\sim} f$ and $Y_1, \ldots, Y_m \overset{IID}{\sim} g$, where f and g are two arbitrary PDFs, and the testing problem

$$H_0 : f = g$$
$$H_1 : f \text{ stochastically dominates } g$$

(Recall from Lecture 7 that this alternative is one way of saying that values drawn from f “tend to be larger” than values drawn from g.)

The rank-sum statistic T_Y is defined as follows:

1. Consider the pooled sample of all observations $X_1, \ldots, X_n, Y_1, \ldots, Y_m$. Sort these $m + n$ values in increasing order. Assign the smallest a rank of 1, the next smallest a rank of 2, etc., and the largest a rank of $m + n$.

2. Define T_Y as the sum of the ranks corresponding to only the Y_i values, i.e. the values from only the second sample.\(^1\)

We expect T_Y to be smaller under H_1 than under H_0, because under H_1 the values of Y_i tend to have smaller ranks. The test that rejects for small values of T_Y is called the Wilcoxon rank-sum test, known alternatively as the Mann-Whitney U-test or the Mann-Whitney-Wilcoxon test. (If we are testing a general two-sided alternative

$$H'_1 : f \neq g$$

then we would reject for both large and small values of T_Y.)

The following theorem states that T_Y has the same distribution under every $P \in H_0$, and provides a method for determining the null distribution and rejection threshold when n and m are both large. (For small n and m, we can determine the exact null distribution of T_Y by computing T_Y for all $\left(\begin{array}{c}n + m \end{array}\right)$ possible sets of ranks for the Y_i’s.)

Theorem 9.1. The distribution of T_Y is the same under any PDF $f = g$. For large n and m, this distribution is approximately $\mathcal{N}\left(\frac{m(n + m + 1)}{2}, \frac{mn(m + n + 1)}{12}\right)$.

We won’t prove this result; let’s just make the following comments:

\(^1\)One may consider equivalently T_X (the sum of ranks of the X_i’s) as $T_X + T_Y$ is a fixed constant.
• If \(f = g \), then each ordering of \(X_1, \ldots, X_n, Y_1, \ldots, Y_m \) is equally likely. Since \(T_Y \) depends only on this ordering, its distribution must be the same under every PDF \(f = g \).

• Let \(I_k = 1 \) if the \(k \)th largest value in \(X_1, \ldots, X_n, Y_1, \ldots, Y_m \) belongs to the second sample, and \(I_k = 0 \) otherwise. Then

\[
T_Y = \sum_{k=1}^{m+n} kI_k.
\]

Under \(H_0 \), \(I_k \) indicates whether the \(k \)th “individual” is selected in a simple random sample of size \(m \) (without replacement) from a population of size \(m+n \). Then the same computations as in Lecture 1 yield formulas for \(\mathbb{E}[I_k] \), \(\text{Var}[I_k] \), and \(\text{Cov}[I_j, I_k] \). Applying linearity of expectation and bilinearity of covariance, we may obtain

\[
\mathbb{E}[T_Y] = \frac{m(m+n+1)}{2}
\]

and

\[
\text{Var}[T_Y] = \frac{mn(m+n+1)}{12}
\]
as in the above theorem. (Details are provided in Rice, Section 11.2.3 Theorem A and Section 7.3.1 Theorems A and B.)

9.2 Permutation and randomization tests

The main idea behind the (one-sample) signed-rank test and the (two-sample) rank-sum test is to exploit a symmetry under \(H_0 \). For the signed-rank test, the symmetry is that it is equally likely to observe \(\pm X_1, \ldots, \pm X_n \) for each of the \(2^n \) combinations of +/- signs. For the rank-sum test, the symmetry is that it is equally likely to observe each of the \((m+n)! \) permutations of the pooled sample \(X_1, \ldots, X_n, Y_1, \ldots, Y_m \).

In fact, this idea of exploiting symmetry provides an alternative (and useful) simulation-based method of obtaining a null distribution for any test statistic \(T \) for these problems:

Example 9.2. Consider two samples \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_m \), and any test statistic \(T(X_1, \ldots, X_n, Y_1, \ldots, Y_m) \). (For concreteness, you can think about \(T = \bar{X} - \bar{Y} \).) For a null hypothesis \(H_0 \) which specifies that all data from both samples are IID from a common distribution, for example

\[
H_0 : X_1, \ldots, X_n, Y_1, \ldots, Y_m \overset{IID}{\sim} f
\]

for an unknown PDF \(f \), the **permutation null distribution** of \(T \) is the distribution of \(T(X_1^*, \ldots, X_n^*, Y_1^*, \ldots, Y_m^*) \) when we fix the observed values \(X_1, \ldots, X_n, Y_1, \ldots, Y_m \) and let \((X_1^*, \ldots, X_n^*, Y_1^*, \ldots, Y_m^*) \) be a permutation of \(X_1, \ldots, X_n, Y_1, \ldots, Y_m \) chosen uniformly at random from the set of all \((m+n)! \) possible permutations. (For \(T = \bar{X} - \bar{Y} \), what this effectively means is that we randomly choose \(n \) of the observations to be \(X_1^*, \ldots, X_n^* \), set the remaining \(m \) observations to be \(Y_1^*, \ldots, Y_m^* \), and compute \(\bar{X}^* - \bar{Y}^* \).)

Under \(H_0 \), each of these \((m+n)! \) possible values of \(T \) is equally likely to be observed. To perform a test that rejects for large values of \(T \), we may use the following procedure:

1. Randomly permute the pooled data \(B \) times (say \(B = 10000 \)), and compute the value of \(T \) each time.
2. Compute an approximate \(p \)-value as the fraction of the \(B \) simulations where we obtained a value of \(T \) larger than \(t_{\text{obs}} \), the value for the original (unpermuted) data. (Reject at level-\(\alpha \) if this \(p \)-value is at most \(\alpha \).)

For a two-sided test that rejects for both large and small values of \(T \), we can compute the \(p \)-value by taking the fraction of simulations where \(T \) is larger than \(t_{\text{obs}} \) or the fraction where \(T \) is smaller than \(t_{\text{obs}} \) (whichever is smaller) and multiply by 2.

This is called a **permutation test** based on \(T \). It is an example of a **conditional test**, because we are looking at the conditional distribution of the data under \(H_0 \) given the set (but not the ordering) of their values.

The utility of this idea is that it may be applied to test statistics \(T \) where we do not understand its (unconditional) distribution under \(H_0 \), and where this distribution may vary for different PDFs \(f = g \).

Example 9.3. Let \(X_1, \ldots, X_n \in \mathcal{X} \) and \(Y_1, \ldots, Y_m \in \mathcal{X} \) be two random samples of “objects” (e.g. images, websites, documents) represented in some data space \(\mathcal{X} \). Suppose we have a function \(d(x, y) \) that measures a “distance” between any two objects \(x, y \in \mathcal{X} \).

To test whether \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_m \) appear to come from the same distribution, the following might be a reasonable test statistic:

\[
T_1 = \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} d(X_i, Y_j) - \frac{1}{\binom{n}{2}} \sum_{1 \leq i < i' \leq n} d(X_i, X_{i'}) - \frac{1}{\binom{m}{2}} \sum_{1 \leq j < j' \leq m} d(Y_j, Y_{j'}).
\]

In words, \(T_1 \) is twice the average distance between an object in sample 1 and an object in sample 2, minus the average distance between two objects in sample 1 and minus the average distance between two objects in sample 2. So \(T_1 \) measures whether, on average, objects from the same sample are more similar to each other than objects from different samples.

Or we might consider a “nearest-neighbors” statistic: For each of the \(m + n \) data values, look at the \(k \) other data values closest to it (as measured by the distance \(d \)) and count how many of these come from the same sample as itself. Let \(T_2 \) be the average of this count across all \(m + n \) data points. So \(T_2 \) measures whether the \(k \) closest other objects tend to come from the same sample.

The distributions of \(T_1 \) and \(T_2 \) under \(H_0 \) may be difficult to understand theoretically and may depend on the unknown common distribution of \(X_1, \ldots, X_n, Y_1, \ldots, Y_m \), but we can still carry out a permutation test based on \(T_1 \) or on \(T_2 \).

A similar idea may be applied in the one-sample setting for testing the null hypothesis

\[
H_0 : X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} f, \text{ for some PDF } f \text{ symmetric about } 0
\]

based on the symmetry underlying the Wilcoxon signed-rank test. You will explore this in Homework 4.