
STATS 200: Introduction to Statistical Inference
Lecture 10: Experimental design



Steps of a statistical study

A “typical” statistical study might consist of the following steps:

1. Identify/formulate the question of interest

2. Design an experiment or study to collect data that addresses
this question

3. Clean, visualize, and explore the data

4. Draw an inference from the data to answer the original
question

Thus far, our focus has been on Step 4. (We discussed briefly
ideas such as hanging histogram plots and QQ plots for Step 3.)

Today we’ll discuss some aspects of Step 2, in the context of
two-sample hypothesis testing.



Main questions for today

I How can we eliminate or minimize the influence of
confounding factors?

(Many examples and case studies are discussed in Rice,
Section 11.4.)

I How can we reason about the size of the study needed to
identify an effect of interest?

I How can we design the experiment so as to maximize the
chance of identifying this effect?



Case study: Peer grading experiment in STATS 60

I Context: Grading student homework assignments in large
classes is time-consuming and costly, perhaps prohibitively so
in Massive Open Online Courses (MOOCs) with thousands or
tens of thousands of students.

I Possible solution: Have students grade each other (peer
grading).

I Question of interest: Can peer grading actually increase
student learning?

Justice Anthony Kennedy, in Supreme Court case Owasso v. Valvo:
“Correcting a classmate’s work can be as much a part of the
assignment as taking the test itself. It is a way to teach material
again in a new context, and it helps show students how to assist
and respect fellow pupils.”
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A simple design

Divide the STATS 60 students (300 over the course of two
quarters) into two groups, “peer-grading” and “control”. Have
only the students in the peer-grading group grade their peers, and
compare learning (e.g. test scores) between the two groups at the
end of the quarter.

Problem: Student performance is influenced by many confounding
factors—their class year, previous coursework and knowledge of
statistics, etc.

Simple solution: Randomly assign students to the two groups, so
that confounding factors tend to be balanced between the groups.
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A simple design

For this design, we might use a two-sample t-test:

Let X1, . . . ,Xn be final exam scores of the peer-grading group,
Y1, . . . ,Ym those of the control group. Supposing that
X1, . . . ,Xn ∼ N (µX , σ

2), Y1, . . . ,Ym ∼ N (µY , σ
2), test

H0 : µX = µY

H1 : µX > µY

using the two-sample T -statistic T =
X̄ − Ȳ

Sp

√
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m

. S2
p is the

pooled sample variance discussed in Lecture 8.

What is the chance that we identify a significant effect (reject H0)?
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Calculating the power

Here n + m = 300 is fairly large, so we expect S2
p to be a very

accurate estimate of σ2. Let’s assume for simplicity that we know
σ2, and perform the test using

Z =
X̄ − Ȳ

σ
√

1
n + 1

m

.

Recall X̄ − Ȳ ∼ N (µX − µY , σ2( 1n + 1
m )).

Under H0, Z ∼ N (0, 1), so a one-sided test rejects when Z > z(α).

Under H1, Z ∼ N (d , 1) where

d =
µX − µY
σ
√

1
n + 1

m

.
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Calculating the power

The power of the test increases with d :

Distributions of Z under H0 and H1

H0 H1

d



Calculating the power

The separation

d =
µX − µY

σ

√
1

1
n + 1

m

is determined by:

I The real difference in mean test scores µX − µY
I The standard deviation of test scores (i.e. “noise” level) σ

I The sample sizes n and m

The quantity µX−µY
σ is called the effect size—it measures the size

of the mean difference in terms of the number of standard
deviations of the noise.



Calculating the power

The power of the test is

PH1 [Z > z(α)] = PH1 [Z − d > z(α)− d ] = 1− Φ(z(α)− d),

where Φ(x) is the standard normal CDF, and we used the fact that
Z − d ∼ N (0, 1) under H1.

Subject to the constraint of n + m = 300 total students, d is
maximized when we choose n = m = 150 students per group. The
effect size identified by the study (in retrospect) was 0.11. So

d =
µX − µY

σ

√
n

2
= 0.95.

At level α = 0.05, the above power is only 0.244! In other words,
had we done this experiment, we would have only had a 24%
chance of rejecting H0 at level α = 0.05.
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Typical p-value

We can also think in terms of the p-value we would have obtained.
If the test statistic we observed were Z , then the p-value would be
the upper tail probability

P = 1− Φ(Z ).

(P and Z here are both random, depending on the outcome of the
experiment.)

Under H1, Z ∼ N (d , 1), so the median value of Z is d . Since
x 7→ 1− Φ(x) is monotone (decreasing), the median value of P is
1− Φ(d). So a “typical” p-value from this experiment would have
been 1− Φ(d). For d = 0.95, this p-value is 0.17.

Both of these calculations indicate that the study would be
underpowered—the effect size is too small to be detected with
statistical significance, if the sample size is 300 students.
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How many samples?
Suppose we would like the power to be much larger, say 0.9, under
a level α = 0.05 test. How many students would we need? If we
have n students in each of the peer-grading and control groups, set

0.9 = 1− Φ(z(α)− d) = 1− Φ

(
z(0.05)− 0.11

√
n

2

)
and solve for n:

Φ

(
z(0.05)− 0.11

√
n

2

)
= 0.1

⇒ z(0.05)− 0.11

√
n

2
= Φ−1(0.1) = −z(0.1)

⇒ n = 2

(
z(0.05) + z(0.1)

0.11

)2

≈ 1416

We would need 2n ≈ 2832 total students. This amounts to doing
this experiment for 5–10 years of STATS 60...
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Effect sizes in education

The previous calculations assumed we knew the effect size was
0.11. In reality, we don’t know this ahead of time. However, we
can compare to what we know:

Classroom discussion—0.82
Computer assisted instruction—0.45
Teacher education—0.12
Charter schools—0.07

These numbers are from the 2015 Hattie ranking, which lists effect
sizes for 195 different educational influences/approaches,
determined from aggregating previous experimental studies. In
education, an effect size larger than 0.4 is typically considered
strong.



A different design to improve power

Main problem: There is too much variation in student performance,
compared to the size of the improvement from peer-grading.

Idea: Compare each student to himself/herself.

Implementation: Divide STATS 60 course into 2 units∗, with a quiz
at the end of each unit. Assign each student to do peer-grading for
one unit, and no peer-grading for the other unit. (To handle the
possible confounding factor that one exam is easier than the other,
randomly choose which unit each student does peer-grading.)

In other words, set up an experiment with paired samples rather
than two independent samples.

∗The real study used 4 units instead of 2.
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Calculating the power for paired samples

Why does this help (and how much does it help by)?

Suppose there are n students. Let X1, . . . ,Xn be their quiz scores
in the peer-grading unit, and Y1, . . . ,Yn their scores in the control
unit.

For this design, we might use a one-sample (a.k.a. paired
two-sample) t-test:

Let Di = Xi − Yi , and reject H0 for large values of the t-statistic

T =

√
nD̄

S
.

Here, D̄ and S2 are the sample mean and variance of the Di ’s.



Calculating the power for paired samples

Why does this help (and how much does it help by)?

Suppose there are n students. Let X1, . . . ,Xn be their quiz scores
in the peer-grading unit, and Y1, . . . ,Yn their scores in the control
unit.

For this design, we might use a one-sample (a.k.a. paired
two-sample) t-test:

Let Di = Xi − Yi , and reject H0 for large values of the t-statistic

T =

√
nD̄

S
.

Here, D̄ and S2 are the sample mean and variance of the Di ’s.



Calculating the power for paired samples

Assume Xi ∼ N (µX , σ
2) and Yi ∼ N (µY , σ

2), as before. Since Xi

and Yi correspond to the same student, they are likely very
correlated. Let’s suppose (Xi ,Yi ) is bivariate normal with
correlation ρ:

(Xi ,Yi ) ∼ N
((

µX
µY

)
,

(
σ2 ρσ2

ρσ2 σ2

))
.

Then Di = Xi − Yi is normally distributed, with mean
E[Di ] = µX − µY and variance

Var[Di ] = Cov[Xi − Yi ,Xi − Yi ]

= Cov[Xi ,Xi ]− Cov[Xi ,Yi ]− Cov[Yi ,Xi ] + Cov[Yi ,Yi ]

= σ2 − ρσ2 − ρσ2 + σ2

= 2σ2(1− ρ).
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Calculating the power for paired samples

Since n is large, S2 should be very close to Var[Di ] = 2σ2(1− ρ).
Let’s suppose again for simplicity that we know 2σ2(1− ρ), and
consider the test statistic

Z =

√
nD̄√

2σ2(1− ρ)
.

We have D̄ ∼ N (µX − µY , 2σ
2(1−ρ)
n ).

Under H0, Z ∼ N (0, 1), so a level-α test rejects when Z > z(α).

Under H1, Z ∼ N (d , 1), where

d =
µX − µY

σ

√
n

2(1− ρ)
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Power comparison

d =
µX − µY

σ

√
n

2(1− ρ)

Compared to having two independent samples of size n (one
peer-grading, one control), we gain a factor of 1/

√
1− ρ in d . You

can think of this as either reducing the effective variance from σ2

(in the case of unpaired samples) to σ2(1− ρ) (in the case of
paired samples), or as increasing the effective sample size from n
(in the case of unpaired samples) to n/(1− ρ) (in the case of
paired samples). The factor 1− ρ is called the relative efficiency
of the unpaired design to the paired design.

E.g., if ρ = 0.9, then the relative efficiency is 0.1, and a paired
design with n pairs yields the same power as an unpaired design
with two independent samples of size 10n.



Examples of paired designs

I Before-and-after studies on the same subjects

I Twin studies

I Subject matching by covariates (e.g., in a medical study,
matching by age, weight, severity of condition, etc.)

Matching by covariates was also used in the STATS 60 experiment:
Rather than randomly choosing, for each student, which unit they
did peer-grading, each student was paired with the “most similar”
other student based on gender, race, previous statistics
background, class year, etc. using a matching algorithm. One
student in each pair was then randomly assigned to peer-grade in
unit 1, and the other to peer-grade in unit 2.

Pairing by covariates is a special case of a randomized block
design, which groups subjects into blocks having similar
characteristics.
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Summary of STATS 60 study

I The estimated (short-term) effect size was 0.11. Despite the
small size of the effect, it was found to be statistically
significant with p-value 0.002.

I Long-term effect was assessed by comparing performance on
the questions corresponding to each unit in the final exam;
the estimated effect size was 0.12, with p-value 0.001.

Conclusion: Peer grading yielded a small but real improvement in
student learning.

Details available at: DL Sun, N Harris, G Walther, M Baiocchi,
“Peer Assessment Enhances Student Learning: The Results of a
Matched Randomized Crossover Experiment in a College Statistics
Class,” PLoS One, 10(12), 2015.



Addendum: S2 is close to σ2 for large n

As n→∞, the sample variance S2 → σ2 in probability. Why?

Suppose X1, . . . ,Xn are IID with mean 0 and variance σ2.

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2

=
1

n − 1

(
n∑

i=1

X 2
i − nX̄ 2

)

=
n

n − 1
· 1

n

n∑
i=1

X 2
i −

n

n − 1
X̄ 2.

As n→∞, n
n−1 → 1. Also by the LLN, 1

n

∑n
i=1 X

2
i → σ2 and

X̄ → 0 in probability.
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Addendum: S2 is close to σ2 for large n

The functions (x , y) 7→ x − y and (x , y) 7→ xy are continuous. So
if Xn → a and Yn → b in probability, then the Continuous Mapping
Theorem implies Xn − Yn → a− b and XnYn → ab in probability.

Then

S2 =
n

n − 1
· 1

n

n∑
i=1

X 2
i −

n

n − 1
X̄ 2 → 1 · σ2 − 1 · 0 · 0 = σ2

in probability.

Clearly this also holds if X1, . . . ,Xn are IID with mean µ and
variance σ2, because S2 doesn’t depend on µ.

We didn’t assume that the Xi ’s are normally distributed—this
argument holds as long as X1, . . . ,Xn are IID with finite variance.
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