STATS 200: Introduction to Statistical Inference
Lecture 11: Testing multiple hypotheses
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The multiple testing problem
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The multiple testing problem
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The multiple testing problem
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The multiple testing problem

Open access, freely available online

Why Most Published Research Findings

Are False

John P.A. loannidis

Summary

There is increasing concern that most
current published research findings are
false.The probability that a research claim
is true may depend on study power and
bias, the number of other studies on the
same question, and, importantly, the ratio
of true to no relationships among the
relationships probed in each scientific
field. In this framework, a research finding
is less likely to be true when the studies
conducted in a field are smaller; when
effect sizes are smaller; when there is a
greater number and lesser preselection
of tested relationships; where there is
greater flexibility in designs, definitions,
outcomes, and analytical modes; when
there is greater financial and other
interest and prejudice; and when more
teams are involved in a scientific field

in chase of statistical significance.
Simulations show that for most study
designs and settings, it is more likely for
a research claim to be false than true.
Moreover, for many current scientific
fields, claimed research findings may
often be simply accurate measures of the
prevailing bias. I this essay, | discuss the
implications of these problems for the
conduct and interpretation of research.

factors that influence this problem and
some corollaries thereof.

Modeling the Framework for False
Positive Findings

Several methodologists have

pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
yet ill-founded strategy of claiming
conclusive research findings solely on
the basis of a single study assessed by
formal statistical significance, typically
for a prvalue less than 0.05. Research
is not most appropriately represented
and summarized by pvalues, but,
unfortunately, there is a widespread
notion that medical research articles

It can be proven that
most claimed research
findings are false.

should be interpreted based only on
frvalues. Research findings are defined
here as any relationship reaching
formal statistical significance, c.g.,
effective interventions, informative
predictors, risk factors, or associations.
“Negative” research is also very useful.
“Negative” is actually a misnomer, and

is characteristic of the field and can
vary a lot depending on whether the
field targets highly likely relationships
or searches for only one or a few

true relationships among thousands
and millions of hypotheses that may

be postulated. Let us also consider,

for computational simplicity,
circumscribed fields where either there
is only one true relationship (among
many that can be hypothesized) or

the power is similar to find any of the
several existing true relationships. The
pre-study probability of a relationship
being true is R/(R + 1). The probability
of a study finding a true relationship
reflects the power 1 - (one minus
the Type II error rate). The probability
of claiming a relationship when none
truly exists reflects the Type I error
rate, o.. Assuming that ¢ relationships
are being probed in the field, the
expected values of the 2 x 2 table are
given in Table 1. After a research
finding has been claimed based on
achieving formal statistical significance,
the poststudy probability that it is true
is the positive predictive value, PPV.
The PPV is also the complementary
probability of what Wacholder et al.
have called the false positive report
probability [10]. According to the 2

x 21table, one gesPPV = (1 ~B)R/(R

DA



The multiple testing problem

Multiple testing problem: If | test n true null hypotheses at level «,
then on average I'll still (falsely) reject an of them.

Examples:

» Test the safety of a drug in terms of a dozen different side
effects

> Test whether a disease is related to 10,000 different gene
expressions



The multiple testing problem

Multiple testing problem: If | test n true null hypotheses at level «,
then on average I'll still (falsely) reject an of them.

Examples:

» Test the safety of a drug in terms of a dozen different side
effects

> Test whether a disease is related to 10,000 different gene
expressions

What are some ways we can think about acceptance/rejection
errors across multiple hypothesis tests/experiments?

What statistical procedures can control these measures of errors?



The Bonferroni correction

Consider testing n different null hypotheses H[gl) é"), all of

yeeey

which are, in fact, true. One goal we might set is to ensure
IP[ reject any null hypothesis | < a.

A simple and commonly-used method of achieving this is called the
Bonferroni method: Perform each test at significance level a/n,
instead of level «.
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The Bonferroni correction

Consider testing n different null hypotheses H[gl), ey é"), all of
which are, in fact, true. One goal we might set is to ensure

IP[ reject any null hypothesis | < a.

A simple and commonly-used method of achieving this is called the
Bonferroni method: Perform each test at significance level a/n,
instead of level «v. Verification:

IP[ reject any null hypothesis |
=P [{reject H(gl)} U...U {reject H(()")}}
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Family-wise error rate

More generally, suppose we test n null hypotheses, ng of which are
true and n — ng of which are false. Results of the tests might be
tabulated as follows:

Hg is true  Hy is false | Total
Reject Hy 4 S R
Accept Hy U T n—R
Total no n— ng n

R = # rejected null hypotheses
V = # type | errors, T = # type |l errors

Remark: We consider ng and n — ng to be fixed quantities. The
number of hypotheses we reject, R, as well as the cell counts U,
V, S, T, are random, as they depend on the data observed in each
experiment.



Family-wise error rate

The family-wise error rate (FWER) is the probability of falsely
rejecting at least one true null hypothesis,

PV > 1].

A procedure controls FWER at level « if P[V > 1] < a, regardless
of the (possibly unknown) number of true null hypotheses ng.



Family-wise error rate

The family-wise error rate (FWER) is the probability of falsely
rejecting at least one true null hypothesis,

PV > 1].

A procedure controls FWER at level « if P[V > 1] < a, regardless
of the (possibly unknown) number of true null hypotheses ng.

Bonferroni controls FWER: Without loss of generality, let
H(()l), e H(()no) be the true null hypotheses.

P[V > 1] =P [{reject HDYU. .U {reject H(S”")}}

<P [reject H(gl)} +...+P [rejeCt HénO)}



Thinking in terms of p-values

Many multiple-testing procedures are formulated as operating on
the p-values returned by individual tests, rather than on the
original data or the test statistics that were used.

For example, Bonferroni may be described as follows: Reject those
null hypotheses whose corresponding p-values are at most a/n.



Thinking in terms of p-values

Many multiple-testing procedures are formulated as operating on
the p-values returned by individual tests, rather than on the
original data or the test statistics that were used.

For example, Bonferroni may be described as follows: Reject those
null hypotheses whose corresponding p-values are at most a/n.

Advantages:
» Abstracts away details about how individual tests were
performed
» Applicable regardless of which tests/test statistics were used
for each experiment
» Allows for meta-analyses of previous experiments without
access to the original data



The null distribution of a p-value

Suppose a null hypothesis Hy is true, and we perform a statistical
test of Hy and obtain a p-value P. What is the distribution of P?



The null distribution of a p-value

Suppose a null hypothesis Hy is true, and we perform a statistical
test of Hy and obtain a p-value P. What is the distribution of P?

If our test statistic T has a continuous distribution under Hy with
CDF F, and we reject for small values of T, then the p-value is
just the lower tail probability

P =F(T).



The null distribution of a p-value

Suppose a null hypothesis Hy is true, and we perform a statistical
test of Hy and obtain a p-value P. What is the distribution of P?

If our test statistic T has a continuous distribution under Hy with
CDF F, and we reject for small values of T, then the p-value is
just the lower tail probability

P = F(T).
For any t € (0,1),
BlP < ] = BIF(T) < ] = B[T < F-1(6)] = F(F- (1)) = ¢.

So P ~ Uniform(0,1). Similarly P ~ Uniform(0, 1) if we reject for
large T, or both large and small T.*

*If T has a discrete distribution under Hp, then so does P, so the null
distribution of P wouldn’t be exactly Uniform(0, 1).



Ordered p-value plots

We can understand multiple testing procedures visually in terms of
the plot of the ordered p-values (sorted from smallest to largest):
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Ordered p-value plots

Applying each test at level 0.05, we reject the null hypotheses
corresponding to the below 18 red points.
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Ordered p-value plots

Applying the Bonferroni correction, we reject null hypotheses with
p-value less than 0.0005, corresponding to the below 4 blue points.
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False discovery rate

Hg is true  Hg is false | Total
Reject Hp %4 S R
Accept Hy U T n—R
Total ng n—ng n

Controlling the FWER P[V > 1] may be too conservative and
greatly reduce our power to detect real effects, especially when n
(the total number of tested hypotheses) is large.



False discovery rate

Hg is true  Hg is false | Total
Reject Hp %4 S R
Accept Hy U T n—R
Total ng n—ng n

Controlling the FWER P[V > 1] may be too conservative and
greatly reduce our power to detect real effects, especially when n
(the total number of tested hypotheses) is large.

In many modern “large-scale testing” applications, focus has
shifted to the false-discovery proportion (FDP)

¥ R>1
FDP =
0 R=0,

and on procedures that control its expected value E[FDP], called
the false-discovery rate (FDR).



FWER vs. FDR

Controlling FDR is a shift in paradigm—uwe are willing to tolerate
some type | errors (false discoveries), as long as most of the
discoveries we make are still true.

It has been argued that in applications where the statistical test is
thought of as providing a “definitive answer” for whether an effect
is real, FWER control is still the correct objective. In contrast, for
applications where the statistical test identifies candidate effects
that are likely to be real and which merit further study, it may be
better to target FDR control.



The Benjamini-Hochberg procedure

The Benjamini-Hochberg (BH) procedure compares the sorted
p-values to a diagonal cutoff line, finds the largest p-value that still
falls below this line, and rejects the null hypotheses for the
p-values up to and including this one.
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The Benjamini-Hochberg procedure

To control FDR at level g, the diagonal cutoff line is set to equal
the Bonferroni level g/n at the smallest p-value and to equal the
uncorrected level g at the largest p-value.
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The Benjamini-Hochberg procedure

Here's the same picture, zoomed in to the 30 smallest p-values. In
this example, the BH procedure rejects the 10 null hypotheses
corresponding to the points in green.
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The Benjamini-Hochberg procedure

Formally, the BH procedure at level g is defined as follows:
1. Sort the p-values. Call them P;) <... < P(,).
2. Find the largest r such that P,y < 47
3. Reject the null hypotheses H(y), ..., H(y).



The Benjamini-Hochberg procedure

Formally, the BH procedure at level g is defined as follows:
1. Sort the p-values. Call them P;) <... < P(,).
2. Find the largest r such that P,y < 47
3. Reject the null hypotheses H(y), ..., H(y).

Theorem (Benjamini and Hochberg (1995))

Consider tests of n null hypotheses, ny of which are true. If the
test statistics (or equivalently, p-values) of these tests are
independent, then the FDR of the above procedure satisfies
FDR < 29 < 4.
n

Note: FDR control is not guaranteed if the test statistics are
dependent.



Motivating the BH procedure

For each a € (0,1), let R(«) be the number of p-values < a. If we
reject hypotheses with p-value < «, then we expect (on average)
to falsely reject ang null hypotheses, since the null p-values are
distributed as Uniform(0, 1). So we might estimate the false

discovery proportion by
any/R(a).



Motivating the BH procedure

For each a € (0,1), let R(«) be the number of p-values < a. If we
reject hypotheses with p-value < «, then we expect (on average)
to falsely reject ang null hypotheses, since the null p-values are
distributed as Uniform(0, 1). So we might estimate the false
discovery proportion by

any/R(a).

As we don't know ng, let's take the conservative upper-bound
an/R(a).

If we set v = Py, the rth largest p-value, then an/R(a) < q
exactly when P,y < gr/n. So the BH procedure chooses « (in a
data-dependent way) so as to reject as many hypotheses as
possible, subject to the constraint an/R(a) < g.



Proof of FDR control

Let's prove (more formally) the previous theorem, that BH controls
the FDR. For any event &, we use the indicator notation

1} = 1 £ holds
0 & does not hold.

Without loss of generality, order the n null hypotheses

H(()l), ey H(()n) so that the first ng of them are true nulls. Then
FDR = E[FDP]

0y

=E —1{R=
3 faem=)
[N ()1

=E 2122 1{reject Ho}—1{R =r}| ,
_f: J=

(where we have noted V = Zjni1 1{reject Héj)}),



Proof of FDR control

Applying linearity of expectation,

FDR = Z ZO: %E [Il{reject HOYL{R = r}]
r=1 j=1
n Jno 1 )
= ZZ ;IP’ [reject HSJ) and R = r] .
r=1j=1

For fixed j, let P*1 <...< P(*n_l) be the sorted n — 1 p-values
other than P;. Then the BH procedure rejects r total hypotheses

including HY) if and only if P; < 9 and the following event holds:

n

r) .__ * * qr
g0 = {P(l),...,P(r_l) <X,

q(r+1)

q(r +2)
O i — -

s Pl > ,...,P(*n_l)>q}.



Proof of FDR control

As the p-values are independent, P; is independent of

P(*l)7 A P(*n_l). Furthermore, P; ~ Uniform(0,1). So

FDR = izo %IP’ E % and £ holds|
r=1 j=1
no n
_ Iplp < Tp[e0
;;rP[PJ < P [0 holds|

no
_ 1ar, e
= P {EY) holds

_ % EHO: 3P [5“) holds} .

j=1r=1



Proof of FDR control

Finally, note that (for any fixed j) the events £1) ... (") are
mutually exclusive—&(") holds if and only if the largest index k

such that P(*k) < @ is exactly k = r — 1 (with EW holding if
P(*k) > q(k;rl) for all k), and this is true for exactly one value of
re{l,...,n}. So

ZH:IP’ [5(’) hoIds] —1.
r=1

Hence

no
q qno
FDR<—§1:—< .
_”.1 =~q
J:



