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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.



The multiple testing problem

Multiple testing problem: If I test n true null hypotheses at level α,
then on average I’ll still (falsely) reject αn of them.

Examples:

I Test the safety of a drug in terms of a dozen different side
effects

I Test whether a disease is related to 10,000 different gene
expressions

What are some ways we can think about acceptance/rejection
errors across multiple hypothesis tests/experiments?

What statistical procedures can control these measures of errors?
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The Bonferroni correction

Consider testing n different null hypotheses H
(1)
0 , . . . ,H

(n)
0 , all of

which are, in fact, true. One goal we might set is to ensure

P[ reject any null hypothesis ] ≤ α.

A simple and commonly-used method of achieving this is called the
Bonferroni method: Perform each test at significance level α/n,
instead of level α.

Verification:

P[ reject any null hypothesis ]

= P
[
{reject H

(1)
0 } ∪ . . . ∪ {reject H

(n)
0 }

]
≤ P

[
reject H

(1)
0

]
+ . . .+ P

[
reject H
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0

]
=
α

n
+ . . .+

α
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Family-wise error rate

More generally, suppose we test n null hypotheses, n0 of which are
true and n − n0 of which are false. Results of the tests might be
tabulated as follows:

H0 is true H0 is false Total

Reject H0 V S R
Accept H0 U T n − R

Total n0 n − n0 n

R = # rejected null hypotheses
V = # type I errors, T = # type II errors

Remark: We consider n0 and n − n0 to be fixed quantities. The
number of hypotheses we reject, R, as well as the cell counts U,
V , S , T , are random, as they depend on the data observed in each
experiment.



Family-wise error rate

The family-wise error rate (FWER) is the probability of falsely
rejecting at least one true null hypothesis,

P[V ≥ 1].

A procedure controls FWER at level α if P[V ≥ 1] ≤ α, regardless
of the (possibly unknown) number of true null hypotheses n0.

Bonferroni controls FWER: Without loss of generality, let

H
(1)
0 , . . . ,H

(n0)
0 be the true null hypotheses.

P[V ≥ 1] = P
[
{reject H

(1)
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(n0)
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]
≤ P

[
reject H

(1)
0

]
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n
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Thinking in terms of p-values

Many multiple-testing procedures are formulated as operating on
the p-values returned by individual tests, rather than on the
original data or the test statistics that were used.

For example, Bonferroni may be described as follows: Reject those
null hypotheses whose corresponding p-values are at most α/n.

Advantages:

I Abstracts away details about how individual tests were
performed

I Applicable regardless of which tests/test statistics were used
for each experiment

I Allows for meta-analyses of previous experiments without
access to the original data
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The null distribution of a p-value

Suppose a null hypothesis H0 is true, and we perform a statistical
test of H0 and obtain a p-value P. What is the distribution of P?

If our test statistic T has a continuous distribution under H0 with
CDF F , and we reject for small values of T , then the p-value is
just the lower tail probability

P = F (T ).

For any t ∈ (0, 1),

P[P ≤ t] = P[F (T ) ≤ t] = P[T ≤ F−1(t)] = F (F−1(t)) = t.

So P ∼ Uniform(0, 1). Similarly P ∼ Uniform(0, 1) if we reject for
large T , or both large and small T .∗
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P = F (T ).
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∗If T has a discrete distribution under H0, then so does P, so the null
distribution of P wouldn’t be exactly Uniform(0, 1).



Ordered p-value plots

We can understand multiple testing procedures visually in terms of
the plot of the ordered p-values (sorted from smallest to largest):
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Ordered p-value plots

Applying each test at level 0.05, we reject the null hypotheses
corresponding to the below 18 red points.
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Ordered p-value plots

Applying the Bonferroni correction, we reject null hypotheses with
p-value less than 0.0005, corresponding to the below 4 blue points.
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False discovery rate
H0 is true H0 is false Total

Reject H0 V S R
Accept H0 U T n − R

Total n0 n − n0 n

Controlling the FWER P[V ≥ 1] may be too conservative and
greatly reduce our power to detect real effects, especially when n
(the total number of tested hypotheses) is large.

In many modern “large-scale testing” applications, focus has
shifted to the false-discovery proportion (FDP)

FDP =

{
V
R R ≥ 1

0 R = 0,

and on procedures that control its expected value E[FDP], called
the false-discovery rate (FDR).
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FWER vs. FDR

Controlling FDR is a shift in paradigm—we are willing to tolerate
some type I errors (false discoveries), as long as most of the
discoveries we make are still true.

It has been argued that in applications where the statistical test is
thought of as providing a “definitive answer” for whether an effect
is real, FWER control is still the correct objective. In contrast, for
applications where the statistical test identifies candidate effects
that are likely to be real and which merit further study, it may be
better to target FDR control.



The Benjamini-Hochberg procedure

The Benjamini-Hochberg (BH) procedure compares the sorted
p-values to a diagonal cutoff line, finds the largest p-value that still
falls below this line, and rejects the null hypotheses for the
p-values up to and including this one.
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The Benjamini-Hochberg procedure

To control FDR at level q, the diagonal cutoff line is set to equal
the Bonferroni level q/n at the smallest p-value and to equal the
uncorrected level q at the largest p-value.
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The Benjamini-Hochberg procedure

Here’s the same picture, zoomed in to the 30 smallest p-values. In
this example, the BH procedure rejects the 10 null hypotheses
corresponding to the points in green.
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The Benjamini-Hochberg procedure

Formally, the BH procedure at level q is defined as follows:

1. Sort the p-values. Call them P(1) ≤ . . . ≤ P(n).

2. Find the largest r such that P(r) ≤ qr
n .

3. Reject the null hypotheses H(1), . . . ,H(r).

Theorem (Benjamini and Hochberg (1995))

Consider tests of n null hypotheses, n0 of which are true. If the
test statistics (or equivalently, p-values) of these tests are
independent, then the FDR of the above procedure satisfies

FDR ≤ n0q

n
≤ q.

Note: FDR control is not guaranteed if the test statistics are
dependent.
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Motivating the BH procedure

For each α ∈ (0, 1), let R(α) be the number of p-values ≤ α. If we
reject hypotheses with p-value ≤ α, then we expect (on average)
to falsely reject αn0 null hypotheses, since the null p-values are
distributed as Uniform(0, 1). So we might estimate the false
discovery proportion by

αn0/R(α).

As we don’t know n0, let’s take the conservative upper-bound

αn/R(α).

If we set α = P(r), the r th largest p-value, then αn/R(α) ≤ q
exactly when P(r) ≤ qr/n. So the BH procedure chooses α (in a
data-dependent way) so as to reject as many hypotheses as
possible, subject to the constraint αn/R(α) ≤ q.
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Proof of FDR control
Let’s prove (more formally) the previous theorem, that BH controls
the FDR. For any event E , we use the indicator notation

1{E} =

{
1 E holds

0 E does not hold.

Without loss of generality, order the n null hypotheses

H
(1)
0 , . . . ,H

(n)
0 so that the first n0 of them are true nulls. Then

FDR = E[FDP]

= E

[
n∑

r=1

V

r
1{R = r}

]

= E

 n∑
r=1

n0∑
j=1

1{reject H
(j)
0 }

1

r
1{R = r}

 ,
(where we have noted V =

∑n0
j=1 1{reject H

(j)
0 }).



Proof of FDR control
Applying linearity of expectation,

FDR =
n∑

r=1

n0∑
j=1

1

r
E
[
1{reject H

(j)
0 }1{R = r}

]
=

n∑
r=1

n0∑
j=1

1

r
P
[
reject H

(j)
0 and R = r

]
.

For fixed j , let P∗
(1) ≤ . . . ≤ P∗

(n−1) be the sorted n − 1 p-values
other than Pj . Then the BH procedure rejects r total hypotheses

including H
(j)
0 if and only if Pj ≤ qr

n and the following event holds:

E(r) :=

{
P∗
(1), . . . ,P

∗
(r−1) ≤

qr

n
,

P∗
(r) >

q(r + 1)

n
,P∗

(r+1) >
q(r + 2)

n
, . . . ,P∗

(n−1) > q

}
.



Proof of FDR control

As the p-values are independent, Pj is independent of
P∗
(1), . . . ,P

∗
(n−1). Furthermore, Pj ∼ Uniform(0, 1). So

FDR =
n∑

r=1

n0∑
j=1

1

r
P
[
Pj ≤

qr

n
and E(r) holds

]
=

n0∑
j=1

n∑
r=1

1

r
P
[
Pj ≤

qr

n

]
P
[
E(r) holds

]
=

n0∑
j=1

n∑
r=1

1

r

qr

n
P
[
E(r) holds

]
=

q

n

n0∑
j=1

n∑
r=1

P
[
E(r) holds

]
.



Proof of FDR control

Finally, note that (for any fixed j) the events E(1), . . . , E(n) are
mutually exclusive—E(r) holds if and only if the largest index k
such that P∗

(k) ≤
q(k+1)

n is exactly k = r − 1 (with E(1) holding if

P∗
(k) >

q(k+1)
n for all k), and this is true for exactly one value of

r ∈ {1, . . . , n}. So

n∑
r=1

P
[
E(r) holds

]
= 1.

Hence

FDR ≤ q

n

n0∑
j=1

1 =
qn0

n
≤ q.


