
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 12 — Parametric models and method of moments

In the last unit, we discussed hypothesis testing, the problem of answering a binary
question about the data distribution. We will now turn to the question of how to estimate
the parameter(s) of this distribution.

A parametric model is a family of probability distributions that can be described by
a finite number of parameters1. We’ve already seen many examples of parametric models:

• The family of normal distributions N (µ, σ2), with parameters µ and σ2.

• The family of Bernoulli distributions Bernoulli(p), with a single parameter p.

• The family of Gamma distributions Gamma(α, β), with parameters α and β.

We will denote a general parametric model by {f(x|θ) : θ ∈ Ω}, where θ ∈ Rk represents k
parameters, Ω ⊆ Rk is the parameter space to which the parameters must belong, and
f(x|θ) is the PDF or PMF for the distribution having parameters θ. For example, in the
N (µ, σ2) model above, θ = (µ, σ2), Ω = R×R+ where R+ is the set of positive real numbers,
and

f(x|θ) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

Given data X1, . . . , Xn, the question of which parametric model we choose to fit to the
data usually depends on what the data values represent (number of occurrences over a period
of time? aggregation of many small effects?) as well as visual examination of the shape of
the data histogram. This question is discussed in the context of several examples in Rice
Sections 8.2–8.3.

Our main question of interest in this unit will be the following: After specifying an
appropriate parametric model {f(x|θ) : θ ∈ Ω}, and given observations

X1, . . . , Xn
IID∼ f(x|θ),

how can we estimate the unknown parameter θ and quantify the uncertainty in our estimate?

12.1 Method of moments

If θ is a single number, then a simple idea to estimate θ is to find the value of θ for which
the theoretical mean of X ∼ f(x|θ) equals the observed sample mean X̄ = 1

n
(X1 + . . .+Xn).

Example 12.1. The Poisson distribution with parameter λ > 0 is a discrete distribution
over the non-negative integers {0, 1, 2, 3, . . .} having PMF

f(x|λ) =
e−λλx

x!
.

1The number of parameters is fixed and cannot grow with the sample size
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If X ∼ Poisson(λ), then it has mean E[X] = λ. Hence for data X1, . . . , Xn
IID∼ Poisson(λ),

a simple estimate of λ is the sample mean λ̂ = X̄.

Example 12.2. The exponential distribution with parameter λ > 0 is a continuous
distribution over R+ having PDF

f(x|λ) = λe−λx.

If X ∼ Exponential(λ), then E[X] = 1
λ
. Hence for data X1, . . . , Xn

IID∼ Exponential(λ), we

estimate λ by the value λ̂ which satisfies 1

λ̂
= X̄, i.e. λ̂ = 1

X̄
.

More generally, for X ∼ f(x|θ) where θ contains k unknown parameters, we may consider
the first k moments of the distribution of X, which are the values

µ1 = E[X]

µ2 = E[X2]

...

µk = E[Xk],

and compute these moments in terms of θ. To estimate θ from data X1, . . . , Xn, we solve
for the value of θ for which these moments equal the observed sample moments

µ̂1 = 1
n
(X1 + . . .+Xn)

...

µ̂k = 1
n
(Xk

1 + . . .+Xk
n).

(This yields k equations in k unknown parameters.) The resulting estimate of θ is called the
method of moments estimator.

Example 12.3. Let X1, . . . , Xn
IID∼ N (µ, σ2). If X ∼ N (µ, σ2), then E[X] = µ and E[X2] =

µ2 + σ2. So the method of moments estimators µ̂ and σ̂2 for µ and σ2 solve the equations

µ̂ = µ̂1,

σ̂2 + µ̂2 = µ̂2.

The first equation yields µ̂ = µ̂1 = X̄, and the second yields

σ̂2 = µ̂2 − µ̂2
1 =

1

n

n∑
i=1

X2
i − X̄2 =

1

n

(
n∑
i=1

X2
i − 2

n∑
i=1

XiX̄ + nX̄2

)
=

1

n

n∑
i=1

(Xi − X̄)2.

Example 12.4. Let X1, . . . , Xn
IID∼ Gamma(α, β). If X ∼ Gamma(α, β), then E[X] = α

β

and E[X2] = α+α2

β2 . So the method of moments estimators α̂, β̂ solve the equations

α̂

β̂
= µ̂1,

α̂ + α̂2

β̂2
= µ̂2.
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Substituting the first equation into the second,(
1

α̂
+ 1

)
µ̂2

1 = µ̂2,

so

α̂ =
1

µ̂2
µ̂21
− 1

=
µ̂2

1

µ̂2 − µ̂2
1

=
X̄2

1
n

∑n
i=1(Xi − X̄)2

.

The first equation then yields

β̂ =
α̂

µ̂1

=
X̄

1
n

∑n
i=1(Xi − X̄)2

.

12.2 Bias, variance, and mean-squared-error

Consider the case of a single parameter θ ∈ R. Any estimator θ̂ := θ̂(X1, . . . , Xn) is a
statistic—it has variability due to the randomness of the data X1, . . . , Xn from which it is

computed. Supposing that X1, . . . , Xn
IID∼ f(x|θ) (so the parametric model is correct and

the true parameter is θ), we can think about whether θ̂ is a “good” estimate of the true
parameter θ in a variety of different ways:

• The bias of θ̂ is Eθ[θ̂] − θ. Here and below, Eθ denotes the expectation with respect

to X1, . . . , Xn
IID∼ f(x|θ).

• The standard error of θ̂ is its standard deviation

√
Varθ[θ̂]. Here and below, Varθ

denotes the variance with respect to X1, . . . , Xn
IID∼ f(x|θ).

• The mean-squared-error (MSE) of θ̂ is Eθ[(θ̂ − θ)2].

The bias measures how close the average value of θ̂ is to the true parameter θ; the standard
error measures how variable is θ̂ around this average value. An estimator with small bias
need not be an accurate estimator, if it has large standard error, and conversely an estimator
with small standard error need not be accurate if it has large bias. The mean-squared-error
encompasses both bias and variance: For any random variable X and any constant c ∈ R,

E[(X − c)2] = E[(X − EX + EX − c)2]

= E[(X − EX)2] + E[2(X − EX)(EX − c)] + E[(EX − c)2]

= Var[X] + 2(EX − c)E[X − EX] + (EX − c)2

= Var[X] + (EX − c)2,

where we used that EX − c is a constant and E[X − EX] = 0. Applying this to X = θ̂ and
c = θ,

Eθ[(θ̂ − θ)2] = Var[θ̂] + (Eθ[θ̂]− θ)2.

We obtain the bias-variance decomposition of mean-squared-error:

Mean-squared-error = Variance + Bias2.
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An important remark is that the bias, standard error, and MSE may depend on the true
parameter θ and take different values for different θ. We say that θ̂ is unbiased for θ if
Eθ[θ̂] = θ for all θ ∈ Ω.

Example 12.5. In the model X1, . . . , Xn
IID∼ Poisson(λ), the method-of-moments estimator

of λ was λ̂ = X̄. Then

Eλ[λ̂] = Eλ[X̄] =
1

n

n∑
i=1

Eλ[Xi] = λ,

where the last equality uses E[X] = λ if X ∼ Poisson(λ). So Eλ[λ̂] − λ = 0 for all λ > 0,
and λ̂ is an unbiased estimator of λ. Also,

Varλ[λ̂] = Varλ[X̄] =
1

n2

n∑
i=1

Varλ[Xi] =
λ

n
,

where we have used that X1, . . . , Xn are independent and Var[X] = λ if X ∼ Poisson(λ).
Hence the standard error of λ̂ is

√
λ/n, and the MSE is λ/n. Note that both of these depend

on λ—they are larger when λ is larger.
As we do not know λ, in practice to determine the variability of λ̂ we may estimate the

standard error by

√
λ̂/n =

√
X̄/n. For large n, this is justified by the fact that λ̂ is unbiased

with standard error of the order 1/
√
n, so we expect λ̂ − λ to be of this order. Hence the

estimated standard error

√
λ̂/n should be very close to the true standard error

√
λ/n. (We

expect the difference between
√
λ/n and

√
λ̂/n to be of the smaller order 1/n.)

Example 12.6. In the model X1, . . . , Xn
IID∼ Exponential(λ), the method-of-moments esti-

mator of λ was λ̂ = 1/X̄. This estimator is biased: Recall Jensen’s inequality, which says
for any strictly convex function g : R → R, E[g(X)] > g(E[X]). The function x 7→ 1/x is
strictly convex, so

Eλ[λ̂] = Eλ[1/X̄] > 1/Eλ[X̄] = 1/(1/λ) = λ,

where we used Eλ[X̄] = Eλ[X1] = 1/λ when X1, . . . , Xn
IID∼ Exponential(λ). So Eλ[λ̂]−λ > 0

for all λ > 0, meaning λ̂ always has positive bias.
To compute exactly the bias, variance, and MSE of λ̂, note that Exponential(λ) is the

same distribution as Gamma(1, λ). Then X̄ = 1
n
(X1+. . .+Xn) ∼ Gamma(n, nλ). (This may

be shown by calculating the MGF of X̄, as in the examples of Lecture 3.) The distribution of
λ̂ = 1/X̄ is called the Inverse-Gamma(n, nλ) distribution, which has mean λn

n−1
and variance

λ2n2

(n−1)2(n−2)
for n ≥ 3. So the bias, variance, and MSE are given by

Bias = Eλ[λ̂]− λ =
λn

n− 1
− λ =

λ

n− 1
,

Variance = Varλ[λ̂] =
λ2n2

(n− 1)2(n− 2)
,

MSE =
λ2n2

(n− 1)2(n− 2)
+

(
λ

n− 1

)2

=
λ2(n+ 2)

(n− 1)(n− 2)
.
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