STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 13 — Maximum likelihood estimation

Last lecture, we introduced the method of moments for estimating one or more parameters
0 in a parametric model. This lecture, we discuss a different method called maximum
likelihood estimation. The focus of this lecture will be on how to compute this estimate;
subsequent lectures will study its statistical properties.

13.1 Maximum likelihood estimation

Consider data X1, ..., X, '~ f(z|0), for a parametric model {f(x|f) : € Q}. Given the
observed values X1, ..., X, of the data, the function

lik(0) = F(X110) % ... x F(X.|0)

of the parameter 6 is called the likelihood function. If f(z|f) is the PMF of a discrete
distribution, then lik(f) is simply the probability of observing the values X7, ..., X, if the
true parameter were . The maximum likelihood estimator (MLE) of ¢ is the value of
6 € Q that maximizes lik(f). Intuitively, it is the value of § that makes the observed data
“most probable” or “most likely”.

The idea of maximum likelihood is related to the use of the likelihood ratio statistic in
the Neyman-Pearson lemma. Recall that for testing

Hy: (Xy,...,X,) ~yg
Hli(Xl,...,Xn)Nh

where g and h are joint PDFs or PMFs for n random variables, the most powerful test rejects
for small values of the likelihood ratio

g(Xl, RN 7Xn)
L(X:,...,X,) = .
(Xps-- 5 Xn) X, ..., X,)
In the context of a parametric model, we may consider testing Hy : X1,..., X, o f(z]00)

versus Hy : Xq,..., X, o f(x|6), for two different parameter values 6y, 6, € Q. Then

g(le- .. ,Xn) = f(X1|90) X ... X f(an()),
h(X1,..., X,) = f(Xq]6h) x ... x f(X,|6),

so the likelihood ratio is exactly lik(6y)/lik(6;). The MLE (if it exists and is unique) is the
value of § € Q for which lik()/1ik(¢’) > 1 for any other value 6" € Q.
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13.2 Examples

Computing the MLE is an optimization problem. Maximizing lik(#) is equivalent to maxi-
mizing its (natural) logarithm

1(6) = log (1K(9)) = Y log f(Xi10).

which in many examples is easier to work with as it involves a sum rather than a product.
Let’s work through several examples:

Example 13.1. Let X;,.... X, o Poisson(A). Then

Xi—A

_ Alie
(A = E log X
i=1 v

= (XilogA— X —log(X;!))
=1

= (log ) ) " X; —nx— ) log(X,).
i=1 i=1
This is differentiable in A, so we maximize [(\) by setting its first derivative equal to 0:
1 n
O_Z(/\)_X;XZ n.
Solving for A yields the estimate A = X. Since I(\) = —oco as A — 0 or A — 0o, and since

A = X is the unique value for which 0 = (), this must be the maximum of . In this
example, A is the same as the method-of-moments estimate.

Example 13.2. Let X,..., X, & N (u,0?). Then

= 1 (X;—m)?
o) =St (e 57

Considering o2 (rather than o) as the parameter, we maximize [(\) by settings its partial
derivatives with respect to p and o2 equal to 0:

ol 1 &

= a5 - 5 Xz_ )

0 o UQH( t)
ol n 1 —

0= = =~ 4+ 3 (X, —
Jo? 202 = 204 ( 2



Solving the first equation yields i = X, and substituting this into the second equation yields
6 =L15" 1(X X)2. Since I(u,0?) = —00 as p — —00, jt — 00, 02 — 0, or 02 — 00,

and as (u, 2) is the unique value for which 0 = g}i and 0 = 8812, this must be the maximum

of [. Again, the MLEs are the same as the method-of-moments estimates.

Example 13.3. Let X4,..., X, 'z Gamma( ,3). Then

n

l(a, ) = Zlog (%X?—le—ﬁ&)

=1

= Z (alog B —logI'(a) + (a — 1) log X; — 6X;)

i=1
=nalogf —nlogT'(a) + (o — 1) ZlogX BZX.

To maximize [(«, 3), we set its partial derivatives equal to 0:

ol nl'(«) =
— 2 —nl _ E loo X
0 nlog 3 ) + - 0g Ay,

o8 8

The second equation implies that the MLEs & and B satisfy B = &/X. Substituting into the
first equation and dividing by n, & satisfies

(&)
0=logd —
YT T@G)

The function f(a) = loga — FFI((S)) decreases from oo to 0 as « increases from 0 to oo, and

1 &
“log X 4+ =S log X, 13.1
og X+~ ; 0g (13.1)

the value —log X + % >, log X; is always negative (by Jensen’s inequality)—hence (13.1)
always has a single unique root &, which is the MLE for . The MLE for 3 is then B =a/X.

Unfortunately there is no closed-form expression for this root &. (In particular, the MLE
& is not the method-of-moments estimator for a.) We may compute the root numerically
using the Newton-Raphson method: We start with an initial guess «(?), which (for
example) may be the method-of-moments estimator

V2
MO S
n Zi:l(Xi - X)2

Having computed o'®) for any t = 0,1,2,..., we compute the next iteration a®*! by ap-

proximating the equation (13.1) with a linear equation using a first-order Taylor expansion
around @ = a®, and set a1 as the value of & that solves this hnear equation. In detail,
let f(a) =loga — Fr(a A first-order Taylor expansion around & = a® in (13.1) yields the
linear approximation

1 &
0~ f(a® v —aM)f(a®D) —log X + =) log X;
(@) + (&= o) f' (o) —log +”i§:1 0g Xi,
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and we set o't1) to be the value of & solving this linear equation, i.e.!

fla®) +1log X — % i+ log X;
f'(a®) '

The iterations a®, oM, @ ... converge to the MLE .

Example 13.4. Let (X, ..., X%) ~ Multinomial(n, (pi,...,px)). (This is not quite the set-
ting of n IID observations from a parametric model, as we have been considering, although
you can think of (X,..., X}) as a summary of n such observations Y7, ..., Y, from the para-
metric model Multinomial(1, (py, ..., px)), where Y; indicates which of k possible outcomes
occurred for the ith observation.) The log-likelihood is given by

k
n n
l(p1,...,px) =log ((X1 Xk>pf1...pf’“> = log <X1 Xk) +ZX¢ log pi,
e e —

and the parameter space is

Q={(p1,-.-,pr) :0<p; <1foralliandp +...+ps =1}

To maximize [(py, ..., px) subject to the linear constraint p; + ...+ p = 1, we may use the
method of Lagrange multipliers: Consider the Lagrangian
n k
L(pi,...,pe,A) =1 X;logp; + A —1),
(P15 Prs A) og<X1’__.,Xk)+; ogpi + A(pr+ ... +pr— 1)
for a constant A to be chosen later. Clearly, subject to p; + ... + pr = 1, maximizing
l(p1,...,px) is the same as maximizing L(py, ..., pg, A). Ignoring momentarily the constraint
p1+...4+pr = 1, the unconstrained maximizer of L is obtained by setting foreacht =1,...,k
oL X
0= =— 4\
Opi Di

which yields p; = —X;/A. For the specific choice of constant A = —n, we obtain p; = X;/n
and Y " P = > i, X;/n =1, so the constraint is satisfied. As p; = X;/n is the uncon-
strained maximizer of L(p,...,ps, —n), this implies that it must also be the constrained
maximizer of L(py,...,pk, —n), so it is the constrained maximizer of I(py,...,px). So the
MLE is given by p; = X;/n fori=1,... k.

If this update yields a®+1) < 0, we may reset a(**1) to be a very small positive value.
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