
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 13 — Maximum likelihood estimation

Last lecture, we introduced the method of moments for estimating one or more parameters
θ in a parametric model. This lecture, we discuss a different method called maximum
likelihood estimation. The focus of this lecture will be on how to compute this estimate;
subsequent lectures will study its statistical properties.

13.1 Maximum likelihood estimation

Consider data X1, . . . , Xn
IID∼ f(x|θ), for a parametric model {f(x|θ) : θ ∈ Ω}. Given the

observed values X1, . . . , Xn of the data, the function

lik(θ) = f(X1|θ)× . . .× f(Xn|θ)

of the parameter θ is called the likelihood function. If f(x|θ) is the PMF of a discrete
distribution, then lik(θ) is simply the probability of observing the values X1, . . . , Xn if the
true parameter were θ. The maximum likelihood estimator (MLE) of θ is the value of
θ ∈ Ω that maximizes lik(θ). Intuitively, it is the value of θ that makes the observed data
“most probable” or “most likely”.

The idea of maximum likelihood is related to the use of the likelihood ratio statistic in
the Neyman-Pearson lemma. Recall that for testing

H0 : (X1, . . . , Xn) ∼ g

H1 : (X1, . . . , Xn) ∼ h

where g and h are joint PDFs or PMFs for n random variables, the most powerful test rejects
for small values of the likelihood ratio

L(X1, . . . , Xn) =
g(X1, . . . , Xn)

h(X1, . . . , Xn)
.

In the context of a parametric model, we may consider testing H0 : X1, . . . , Xn
IID∼ f(x|θ0)

versus H1 : X1, . . . , Xn
IID∼ f(x|θ1), for two different parameter values θ0, θ1 ∈ Ω. Then

g(X1, . . . , Xn) = f(X1|θ0)× . . .× f(Xn|θ0),

h(X1, . . . , Xn) = f(X1|θ1)× . . .× f(Xn|θ1),

so the likelihood ratio is exactly lik(θ0)/lik(θ1). The MLE (if it exists and is unique) is the
value of θ ∈ Ω for which lik(θ)/lik(θ′) > 1 for any other value θ′ ∈ Ω.
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13.2 Examples

Computing the MLE is an optimization problem. Maximizing lik(θ) is equivalent to maxi-
mizing its (natural) logarithm

l(θ) = log (lik(θ)) =
n∑
i=1

log f(Xi|θ),

which in many examples is easier to work with as it involves a sum rather than a product.
Let’s work through several examples:

Example 13.1. Let X1, . . . , Xn
IID∼ Poisson(λ). Then

l(λ) =
n∑
i=1

log
λXie−λ

Xi!

=
n∑
i=1

(Xi log λ− λ− log(Xi!))

= (log λ)
n∑
i=1

Xi − nλ−
n∑
i=1

log(Xi!).

This is differentiable in λ, so we maximize l(λ) by setting its first derivative equal to 0:

0 = l′(λ) =
1

λ

n∑
i=1

Xi − n.

Solving for λ yields the estimate λ̂ = X̄. Since l(λ) → −∞ as λ → 0 or λ → ∞, and since
λ̂ = X̄ is the unique value for which 0 = l′(λ), this must be the maximum of l. In this
example, λ̂ is the same as the method-of-moments estimate.

Example 13.2. Let X1, . . . , Xn
IID∼ N (µ, σ2). Then

l(µ, σ2) =
n∑
i=1

log

(
1√

2πσ2
e−

(Xi−µ)
2

2σ2

)
=

n∑
i=1

(
−1

2
log(2πσ2)− (Xi − µ)2

2σ2

)
= −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(Xi − µ)2.

Considering σ2 (rather than σ) as the parameter, we maximize l(λ) by settings its partial
derivatives with respect to µ and σ2 equal to 0:

0 =
∂l

∂µ
=

1

σ2

n∑
i=1

(Xi − µ),

0 =
∂l

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2.
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Solving the first equation yields µ̂ = X̄, and substituting this into the second equation yields
σ̂2 = 1

n

∑n
i=1(Xi − X̄)2. Since l(µ, σ2) → −∞ as µ → −∞, µ → ∞, σ2 → 0, or σ2 → ∞,

and as (µ̂, σ̂2) is the unique value for which 0 = ∂l
∂µ

and 0 = ∂l
∂σ2 , this must be the maximum

of l. Again, the MLEs are the same as the method-of-moments estimates.

Example 13.3. Let X1, . . . , Xn
IID∼ Gamma(α, β). Then

l(α, β) =
n∑
i=1

log

(
βα

Γ(α)
Xα−1
i e−βXi

)
=

n∑
i=1

(α log β − log Γ(α) + (α− 1) logXi − βXi)

= nα log β − n log Γ(α) + (α− 1)
n∑
i=1

logXi − β
n∑
i=1

Xi.

To maximize l(α, β), we set its partial derivatives equal to 0:

0 =
∂l

∂α
= n log β − nΓ′(α)

Γ(α)
+

n∑
i=1

logXi,

0 =
∂l

∂β
=
nα

β
−

n∑
i=1

Xi.

The second equation implies that the MLEs α̂ and β̂ satisfy β̂ = α̂/X̄. Substituting into the
first equation and dividing by n, α̂ satisfies

0 = log α̂− Γ′(α̂)

Γ(α̂)
− log X̄ +

1

n

n∑
i=1

logXi. (13.1)

The function f(α) = logα − Γ′(α)
Γ(α)

decreases from ∞ to 0 as α increases from 0 to ∞, and

the value − log X̄ + 1
n

∑n
i=1 logXi is always negative (by Jensen’s inequality)—hence (13.1)

always has a single unique root α̂, which is the MLE for α. The MLE for β is then β̂ = α̂/X̄.
Unfortunately there is no closed-form expression for this root α̂. (In particular, the MLE

α̂ is not the method-of-moments estimator for α.) We may compute the root numerically
using the Newton-Raphson method: We start with an initial guess α(0), which (for
example) may be the method-of-moments estimator

α(0) =
X̄2

1
n

∑n
i=1(Xi − X̄)2

.

Having computed α(t) for any t = 0, 1, 2, . . ., we compute the next iteration α(t+1) by ap-
proximating the equation (13.1) with a linear equation using a first-order Taylor expansion
around α̂ = α(t), and set α(t+1) as the value of α̂ that solves this linear equation. In detail,
let f(α) = logα − Γ′(α)

Γ(α)
. A first-order Taylor expansion around α̂ = α(t) in (13.1) yields the

linear approximation

0 ≈ f(α(t)) + (α̂− α(t))f ′(α(t))− log X̄ +
1

n

n∑
i=1

logXi,
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and we set α(t+1) to be the value of α̂ solving this linear equation, i.e.1

α(t+1) = α(t) +
−f(α(t)) + log X̄ − 1

n

∑n
i=1 logXi

f ′(α(t))
.

The iterations α(0), α(1), α(2), . . . converge to the MLE α̂.

Example 13.4. Let (X1, . . . , Xk) ∼ Multinomial(n, (p1, . . . , pk)). (This is not quite the set-
ting of n IID observations from a parametric model, as we have been considering, although
you can think of (X1, . . . , Xk) as a summary of n such observations Y1, . . . , Yn from the para-
metric model Multinomial(1, (p1, . . . , pk)), where Yi indicates which of k possible outcomes
occurred for the ith observation.) The log-likelihood is given by

l(p1, . . . , pk) = log

((
n

X1, . . . , Xk

)
pX1

1 . . . pXkk

)
= log

(
n

X1, . . . , Xk

)
+

k∑
i=1

Xi log pi,

and the parameter space is

Ω = {(p1, . . . , pk) : 0 ≤ pi ≤ 1 for all i and p1 + . . .+ pk = 1}.

To maximize l(p1, . . . , pk) subject to the linear constraint p1 + . . .+ pk = 1, we may use the
method of Lagrange multipliers: Consider the Lagrangian

L(p1, . . . , pk, λ) = log

(
n

X1, . . . , Xk

)
+

k∑
i=1

Xi log pi + λ(p1 + . . .+ pk − 1),

for a constant λ to be chosen later. Clearly, subject to p1 + . . . + pk = 1, maximizing
l(p1, . . . , pk) is the same as maximizing L(p1, . . . , pk, λ). Ignoring momentarily the constraint
p1+. . .+pk = 1, the unconstrained maximizer of L is obtained by setting for each i = 1, . . . , k

0 =
∂L

∂pi
=
Xi

pi
+ λ,

which yields p̂i = −Xi/λ. For the specific choice of constant λ = −n, we obtain p̂i = Xi/n
and

∑n
i=1 p̂i =

∑n
i=1 Xi/n = 1, so the constraint is satisfied. As p̂i = Xi/n is the uncon-

strained maximizer of L(p1, . . . , pk,−n), this implies that it must also be the constrained
maximizer of L(p1, . . . , pk,−n), so it is the constrained maximizer of l(p1, . . . , pk). So the
MLE is given by p̂i = Xi/n for i = 1, . . . , k.

1If this update yields α(t+1) ≤ 0, we may reset α(t+1) to be a very small positive value.
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