
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 16 — MLE under model misspecification

The eminent statistician George Box once said,

“All models are wrong, but some are useful.”

When we fit a parametric model to a set of data X1, . . . , Xn, we are usually not certain that
the model is correct (for example, that the data truly have a normal or Gamma distribution).
Rather, we think of the model as an approximation to what might be the true distribution
of data. It is natural to ask, then, whether the MLE estimate θ̂ in a parametric model is
at all meaningful, if the model itself is incorrect. The goal of this lecture is to explore this
question and to discuss how the properties of θ̂ change under model misspecification.

16.1 MLE and the KL-divergence

Consider a parametric model {f(x|θ) : θ ∈ Ω}. We’ll assume throughout this lecture that
f(x|θ) is the PDF of a continuous distribution, and θ ∈ R is a single parameter.

Thus far we have been measuring the error of an estimator θ̂ by its distance to the true

parameter θ, via the bias, variance, and MSE. If X1, . . . , Xn
IID∼ g for a PDF g that is not

in the model, then there is no true parameter value θ associated to g. We will instead think
about a measure of “distance” between two general PDFs:

Definition 16.1. For two PDFs f and g, the Kullback-Leibler (KL) divergence from
f to g is

DKL(g‖f) =

∫
g(x) log

g(x)

f(x)
dx.

Equivalently, if X ∼ g, then

DKL(g‖f) = E
[
log

g(X)

f(X)

]
.

DKL has many information-theoretic interpretations and applications. For our purposes,
we’ll just note the following properties: If f = g, then log(g(x)/f(x)) ≡ 0, so DKL(g‖f) = 0.
By Jensen’s inequality, since x 7→ − log x is convex,

DKL(g‖f) = E
[
− log

f(X)

g(X)

]
≥ − logE

[
f(X)

g(X)

]
= − log

∫
f(x)

g(x)
g(x)dx = 0.

Furthermore, since x 7→ − log x is strictly convex, the inequality above can only be an
equality if f(X)/g(X) is a constant random-variable, so f = g. Thus, like an ordinary
distance measure, DKL(g‖f) ≥ 0 always, and DKL(g‖f) = 0 if and only if f = g.
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Example 16.2. To get an intuition for what the KL-divergence is measuring, let f and g
be the PDFs of the distributions N (µ0, σ

2) and N (µ1, σ
2). Then

log
g(x)

f(x)
= log

(
1√

2πσ2
e−

(x−µ1)
2

2σ2

/
1√

2πσ2
e−

(x−µ0)
2

2σ2

)

= −(x− µ1)
2

2σ2
+

(x− µ0)
2

2σ2

=
2(µ1 − µ0)x− (µ2

1 − µ2
0)

2σ2
.

So letting X ∼ g,

DKL(g‖f) = E
[
log

g(X)

f(X)

]
=

1

2σ2

(
2(µ1 − µ0)E[X]− (µ2

1 − µ2
0)
)

=
1

2σ2

(
2(µ1 − µ0)µ1 − (µ2

1 − µ2
0)
)

=
(µ1 − µ0)

2

2σ2
.

Thus DKL(g‖f) is proportional to the square of the mean difference normalized by the
standard deviation σ. In this example we happen to have DKL(f‖g) = DKL(g‖f), but
in general this is not true—for two arbitrary PDFs f and g, we may have DKL(f‖g) 6=
DKL(g‖f).

Suppose X1, . . . , Xn
IID∼ g, and consider a parametric model {f(x|θ) : θ ∈ Ω} which may

or may not contain the true PDF g. The MLE θ̂ is the value of θ that maximizes

1

n
l(θ) =

1

n

n∑
i=1

log f(Xi|θ),

and this quantity by the Law of Large Numbers converges in probability to

Eg[log f(X|θ)]

where Eg denotes expectation with respect to X ∼ g. In Lecture 14, we showed that when
g(x) = f(x|θ0) (meaning g belongs to the parametric model, and the true parameter is θ0),
then Eg[log f(X|θ)] is maximized at θ = θ0—this explained consistency of the MLE. More
generally, when g does not necessarily belong to the parametric model, we may write

Eg[log f(X|θ)] = Eg[log g(X)]− Eg
[
log

g(X)

f(X|θ)

]
= Eg[log g(X)]−DKL(g‖f(x|θ)).

The term Eg[log g(X)] does not depend on θ, so the value of θ maximizing Eg[log f(X|θ)]
is the value of θ that minimizes DKL(g‖f(x|θ)). This (heuristically) shows the following
result:1

1For a rigorous statement of necessary regularity conditions, see for example Halbert White (1982) “Max-
imum likelihood estimation of misspecified models”.
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Theorem 16.3. Let X1, . . . , Xn
IID∼ g and suppose DKL(g‖f(x|θ)) has a unique minimum

at θ = θ∗. Then, under suitable regularity conditions on {f(x|θ) : θ ∈ Ω} and on g, the MLE
θ̂ converges to θ∗ in probability as n→∞.

The density f(x|θ∗) may be interpreted as the “KL-projection” of g onto the parametric
model {f(x|θ) : θ ∈ Ω}. In other words, the MLE is estimating the distribution in our model
that is closest, with respect to KL-divergence, to g.

16.2 The sandwich estimator of variance

When X1, . . . , Xn
IID∼ g, how close is the MLE θ̂ to this KL-projection θ∗? Analogous to our

proof in Lecture 14, we may answer this question by performing a Taylor expansion of the
identity 0 = l′(θ̂) around the point θ̂ = θ∗. This yields

0 ≈ l′(θ∗) + (θ̂ − θ∗)l′′(θ∗),

so
√
n(θ̂ − θ∗) ≈ −

1√
n
l′(θ∗)

1
n
l′′(θ∗)

. (16.1)

Recall the score function

z(x, θ) =
∂

∂θ
log f(x|θ).

The Law of Large Numbers applied to the denominator of (16.1) gives

1

n
l′′(θ∗) =

1

n

n∑
i=1

z′(Xi, θ
∗)→ Eg[z′(X, θ∗)]

in probability, while the Central Limit Theorem applied to the numerator of (16.1) gives

1√
n
l′(θ∗) =

1√
n

n∑
i=1

z(Xi, θ
∗)→ N (0,Varg[z(X, θ∗)])

in distribution. (The quantity z(X, θ∗) has mean 0 when X ∼ g because θ∗ maximizes
Eg[log f(X|θ)], so differentiating with respect to θ yields

0 = Eg
[
∂

∂θ
[log f(X|θ)]θ=θ∗

]
= Eg[z(X, θ∗)].)

Hence by Slutsky’s lemma,

√
n(θ̂ − θ∗)→ N

(
0,

Varg[z(X, θ∗)]

Eg[z′(X, θ∗)]2

)
.

These are the same formulas as in Lecture 14 (with θ∗ in place of θ0), except expectations
and variances are taken with respect to X ∼ g rather than X ∼ f(x|θ∗). If g(x) = f(x|θ∗),
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meaning the model is correct, then Varg[z(X, θ∗)] = −Eg[z′(X, θ∗)] = I(θ∗), and we recover
our theorem from Lecture 14. However, when g(x) 6= f(x|θ∗), in general

Varg[z(X, θ∗)] 6= −Eg[z′(X, θ∗)],

so we cannot simplify the variance of the above normal limit any further. We may instead
estimate the individual quantities Varg[z(X, θ∗)] and Eg[z′(X, θ∗)] using the sample variance

of z(Xi, θ̂) and the sample mean of z′(Xi, θ̂)—this yields the sandwich estimator for the
variance of the MLE.

Example 16.4. Suppose we fit the model Exponential(λ) to data X1, . . . , Xn by computing
the MLE. The log-likelihood is

l(λ) =
n∑
i=1

log λe−λXi = n log λ− λ
n∑
i=1

Xi,

so the MLE solves the equation 0 = l′(λ) = n/λ−
∑n

i=1Xi. This yields the MLE λ̂ = 1/X̄
(which is the same as the method-of-moments estimator from Lecture 12).

We may compute the sandwich estimate of the variance of λ̂ as follows: In the exponential
model,

z(x, λ) =
∂

∂λ
log f(x|λ) =

1

λ
− x, z′(x, λ) =

∂2

∂λ2
log f(x|λ) = − 1

λ2
.

Let Z̄ = 1
n

∑n
i=1 z(Xi, λ̂) = 1

n

∑n
i=1(

1

λ̂
− Xi) = 1

λ̂
− X̄ be the sample mean of z(X1, λ̂), ...,

z(Xn, λ̂). We estimate Varg[z(X,λ)] by the sample variance of z(X1, λ̂), . . . , z(Xn, λ̂):

1

n− 1

n∑
i=1

(z(Xi, λ̂)− Z̄)2 =
1

n− 1

n∑
i=1

(
( 1

λ̂
−Xi)− ( 1

λ̂
− X̄)

)2
=

1

n− 1

n∑
i=1

(Xi − X̄)2 = S2
X .

We estimate Eg[z′(X,λ)] by the sample mean of z′(X1, λ̂), . . . , z′(Xn, λ̂):

1

n

n∑
i=1

z′(Xi, λ̂) =
1

n

n∑
i=1

− 1

λ̂2
= − 1

λ̂2
.

So the sandwich estimate of Varg[z(X,λ)]/Eg[z′(X,λ)]2 is S2
X λ̂

4 = S2
X/X̄

4, and we may

estimate the standard error of λ̂ by SX/(X̄
2
√
n).

In Homework 6, you will compare this sandwich estimator to the usual estimator based
on the Fisher information, when X1, . . . , Xn do not truly come from an exponential model.
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