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Lecture 17 — Plugin estimators and the delta method

17.1 Estimating a function of θ

In the setting of a parametric model, we have been discussing how to estimate the parameter
θ. We showed how to compute the MLE θ̂, derived its variance and sampling distribution
for large n, and showed that no unbiased estimator can achieve variance much smaller than
that of the MLE for large n (the Cramer-Rao lower bound).

In many examples, the quantity we are interested in is not θ itself, but some value g(θ).
The obvious way to estimate g(θ) is to use g(θ̂), where θ̂ is an estimate (say, the MLE) of θ.
This is called the plugin estimate of g(θ), because we are just “plugging in” θ̂ for θ.

Example 17.1 (Odds). You play a game with a friend, where you flip a biased coin. If the
coin lands heads, you give your friend $1. If the coin lands tails, your friend gives you $x.
What is the value of x that makes this a fair game?

If the coin lands heads with probability p, then your expected winnings is −p+ (1− p)x.
The game is fair when −p + (1 − p)x = 0, i.e. when x = p/(1 − p). This value p/(1 − p) is
the odds of getting heads to getting tails. To estimate the odds from n coin flips

X1, . . . , Xn
IID∼ Bernoulli(p),

we may first estimate p by p̂ = X̄. (This is both the method of moments estimator and the
MLE.) Then the plugin estimate of p/(1− p) is simply X̄/(1− X̄).

The odds falls in the interval (0,∞) and is not symmetric about p = 1/2. We oftentimes
think instead in terms of the log-odds, log p

1−p—this can be any real number and is symmetric

about p = 1/2. The plugin estimate for the log-odds is log X̄
1−X̄ .

Example 17.2 (The Pareto mean). The Pareto(x0, θ) distribution for x0 > 0 and θ > 1 is
a continuous distribution over the interval [x0,∞), given by the PDF

f(x|x0, θ) =

{
θxθ0x

−θ−1 x ≥ x0

0 x < x0.

It is commonly used in economics as a model for the distribution of income. x0 represents
the minimum possible income; let’s assume that x0 is known and equal to 1. We then have
a one-parameter model with PDFs f(x|θ) = θx−θ−1 supported on [1,∞).

The mean of the Pareto distribution is

Eθ[X] =

∫ ∞
1

x · θx−θ−1dx = θ
x−θ+1

−θ + 1

∣∣∣∣∞
1

=
θ

θ − 1
,
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so we might estimate the mean income by θ̂/(θ̂− 1) where θ̂ is the MLE. To compute θ̂ from
observations X1, . . . , Xn, the log-likelihood is

l(θ) =
n∑
i=1

log(θXi
−θ−1) =

n∑
i=1

(log θ − (θ + 1) logXi) = n log θ − (θ + 1)
n∑
i=1

logXi.

Solving the equation

0 = l′(θ) =
n

θ
−

n∑
i=1

logXi

yields the MLE θ̂ = n/
∑n

i=1 logXi.

17.2 The delta method

We would like to be able to quantify our uncertainty about g(θ̂) using what we know about
the uncertainty of θ̂ itself. When n is large, this may be done using a first-order Taylor
approximation of g, formalized as the delta method:

Theorem 17.3 (Delta method). If a function g : R→ R is differentiable at θ0 with g′(θ0) 6=
0, and if √

n(θ̂ − θ0)→ N (0, v(θ0))

in distribution as n→∞ for some variance v(θ0), then

√
n(g(θ̂)− g(θ0))→ N (0, (g′(θ0))2v(θ0))

in distribution as n→∞.

Proof sketch. We perform a Taylor expansion of g(θ̂) around θ̂ = θ0:

g(θ̂) ≈ g(θ0) + (θ̂ − θ0)g′(θ0).

Rearranging yields √
n
(
g(θ̂)− g(θ0)

)
≈
√
n(θ̂ − θ0)g′(θ0),

and multiplying a mean-zero normal variable by a constant c scales its variance by c2.

Example 17.4 (Log-odds). Let X1, . . . , Xn
IID∼ Bernoulli(p), and recall the plugin estimate

of the log-odds log p
1−p given by log X̄

1−X̄ . By the Central Limit Theorem,

√
n(X̄ − p)→ N (0, p(1− p))

in distribution, where p(1−p) is the variance of a Bernoulli(p) random variable. The function
g(p) = log p

1−p = log p− log(1− p) has derivative

g′(p) =
1

p
+

1

1− p
=

1

p(1− p)
,
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so by the delta method,

√
n

(
log

X̄

1− X̄
− log

p

1− p

)
→ N

(
0,

1

p(1− p)

)
.

In other words, our estimate of the log-odds of heads to tails is approximately normally
distributed around the true log-odds log p

1−p , with variance 1
np(1−p) .

Suppose we toss this biased coin n = 100 times and observe 60 heads, i.e. X̄ = 0.6. We
would estimate the log-odds by log X̄

1−X̄ ≈ 0.41, and we may estimate our standard error by√
1

nX̄(1−X̄)
≈ 0.20.

Example 17.5 (The Pareto mean). Let X1, . . . , Xn
IID∼ Pareto(1, θ), and recall that the

MLE for θ is θ̂ = n/
∑n

i=1 logXi. We may use the maximum-likelihood theory developed in

Lecture 14 to understand the distribution of θ̂: We compute (for x ≥ 1)

log f(x|θ) = log(θx−θ−1) = log θ − (θ + 1) log x

∂

∂θ
log f(x|θ) =

1

θ
− log x

∂2

∂θ2
log f(x|θ) = − 1

θ2
.

Then the Fisher information is given by I(θ) = 1/θ2, so
√
n(θ̂ − θ)→ N (0, θ2)

in distribution as n→∞. For the function g(θ) = θ/(θ − 1), we have

g′(θ) =
1

θ − 1
− θ

(θ − 1)2
= − 1

(θ − 1)2
.

So the delta method implies

√
n

(
θ̂

θ̂ − 1
− θ

θ − 1

)
→ N

(
0,

θ2

(θ − 1)4

)
.

Say, for a data set with n = 1000 income values, we obtain the MLE θ̂ = 1.5. We might
then estimate the mean income as θ̂/(θ̂ − 1) = 3, and estimate our standard error by√

θ̂2

n(θ̂−1)4
≈ 0.19.

What if we decided to just estimate the mean income by the sample mean, X̄? Since
E[Xi] = θ/(θ − 1), the Central Limit Theorem implies

√
n

(
X̄ − θ

θ − 1

)
→ N (0,Var[Xi])

in distribution. For θ > 2, we may compute

E[X2
i ] =

∫ ∞
1

x2 · θx−θ−1dx = θ
x−θ+2

−θ + 2

∣∣∣∣∞
1

=
θ

θ − 2
,
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so

Var[Xi] = E[X2
i ]− (E[Xi])

2 =
θ

θ − 2
−
(

θ

θ − 1

)2

=
θ

(θ − 1)2(θ − 2)
.

(If θ ≤ 2, the variance of Xi is actually infinite.) For any θ, this variance is greater than
θ2/(θ − 1)4.

Thus if the Pareto model for income is correct, then our previous estimate θ̂/(θ̂ − 1) is
more accurate for the mean income than is the sample mean X̄. Intuitively, this is because
the Pareto distribution is heavy-tailed, and the sample mean X̄ is heavily influenced by rare
but extremely large data values. On the other hand, θ̂ is estimating the shape of the Pareto
distribution and estimating the mean by its relationship to this shape in the Pareto model.
The formula for θ̂ involves the values logXi rather than Xi, so θ̂ is not as heavily influenced
by extremely large data values. Of course, the estimate θ̂/(θ̂ − 1) relies strongly on the
correctness of the Pareto model, whereas X̄ would be a valid estimate of the mean even if
the Pareto model doesn’t hold true.

That the plugin estimate g(θ̂) performs better than X̄ in the previous example is not a
coincidence—it is in certain senses the best we can do for estimating g(θ). For example, we
have the following more general version of the Cramer-Rao lower bound:

Theorem 17.6. For a parametric model {f(x|θ) : θ ∈ Ω} (satisfying certain mild regularity
assumptions) where θ is a single parameter, let g be any function differentiable on all of Ω,

and let T be any unbiased estimator of g(θ) based on data X1, . . . , Xn
IID∼ f(x|θ). Then

Varθ[T ] ≥ g′(θ)2

nI(θ)
.

The proof is identical to that of Theorem 15.4, except with the equation θ = Eθ[T ]
replaced by g(θ) = Eθ[T ]. (Differentiating this equation yields g′(θ) = Eθ[TZ] = Covθ[T, Z]
as in Theorem 15.4.) An estimator T for g(θ) that achieves this variance g′(θ)2/(nI(θ)) is
efficient. The plugin estimate g(θ̂) where θ̂ is the MLE achieves this variance asymptotically,
so we say it is asymptotically efficient. This theorem ensures that no unbiased estimator
of g(θ) can achieve variance much smaller than g(θ̂), when n is large, and in particular
applies to the estimator T = X̄ of the previous example.
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