
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 18 — Confidence intervals

We have seen how to understand the variability of an estimate θ̂ for a parameter θ, or of
g(θ̂) for a quantity g(θ), in terms of its sampling distribution and its standard error. This
understanding may be used to construct a confidence interval for θ or g(θ).

18.1 Exact confidence intervals

In a parametric model, let g(θ) be any quantity of interest (which might be the parameter θ
itself). Informally, a confidence interval for g(θ) is a random interval calculated from the
data that contains this value g(θ) with a specified probability. For example, a 90% confidence
interval contains g(θ) with probability 0.9, and a 95% confidence interval contains g(θ) with
probability 0.95. (If we construct 100 different 90% confidence intervals for θ using 100
independent sets of data, then we would expect about 90 of them to contain θ.)

More formally, what this means is the following: Let X1, . . . , Xn be a sample of data.
By random interval, we mean an interval whose lower and upper endpoints L(X1, . . . , Xn)
and U(X1, . . . , Xn) are functions of the data X1, . . . , Xn. (Hence the interval is random in
the same sense that the data itself is random—a different realization of the data leads to a
different interval.) The interval [L(X1, . . . , Xn), U(X1, . . . , Xn)] is a 100(1− α)% confidence
interval for g(θ) if, for all θ ∈ Ω,

Pθ [L(X1, . . . , Xn) ≤ g(θ) ≤ U(X1, . . . , Xn)] = 1− α,

where Pθ denotes probability under X1, . . . , Xn
IID∼ f(x|θ).

A confidence interval for g(θ) is commonly constructed from an estimate of g(θ) and an
estimate of the associated standard error:

Example 18.1. Consider data X1, . . . , Xn
IID∼ N (µ, σ2), where both µ and σ2 are unknown.

To construct a confidence interval for µ, consider the estimate X̄. As X̄ ∼ N (µ, σ2/n), the
standard error of X̄ is σ/

√
n, which we may estimate by S/

√
n where

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2.

Recall from Lecture 7 that when X1, . . . , Xn
IID∼ N (µ, σ2), the quantity

X̄ − µ
S/
√
n

=

√
n(X̄ − µ)

S

has a t-distribution with n − 1 degrees of freedom. (In Lecture 7 we assumed µ = 0, but
the distribution of this quantity doesn’t depend on µ.) Letting tn−1(α/2) be the upper-α/2
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point of the tn−1 distribution and noting that −tn−1(α/2) is then the lower-α/2 point by
symmetry, this means

Pµ,σ2

[
−tn−1(α/2) ≤

√
n(X̄ − µ)

S
≤ tn−1(α/2)

]
= 1− α.

The upper inequality above may be rearranged as

X̄ − S√
n
tn−1(α/2) ≤ µ,

and the lower inequality may be rearranged as

µ ≤ X̄ +
S√
n
tn−1(α/2).

Hence

Pµ,σ2

[
X̄ − S√

n
tn−1(α/2) ≤ µ ≤ X̄ +

S√
n
tn−1(α/2)

]
= 1− α,

so [X̄ − S√
n
tn−1(α/2), X̄ + S√

n
tn−1(α/2)] is a 100(1−α)% confidence interval for µ. We’ll use

the notation X̄ ± S√
n
tn−1(α/2) as shorthand for this interval.

18.2 Asymptotic confidence intervals

In the previous example, we were able to construct an exact confidence interval because we
knew the exact distribution of

√
n(X̄−µ)/S, which is tn−1 (and which does not depend on µ

and σ2). Suppose that we had forgotten this fact. If n is large, we could have still reasoned
as follows: By the Central Limit Theorem, as n→∞,

√
n(X̄ − µ)→ N (0, σ2)

in distribution. By our addendum at the end of Lecture 10, S2 → σ2 in probability (mean-
ing, the sample variance S2 is consistent for σ2). Then, applying the Continuous Mapping
Theorem and Slutsky’s Lemma,

√
n(X̄ − µ)

S
=
σ

S
×
√
n(X̄ − µ)

σ
→ N (0, 1)

in distribution, so

Pµ,σ2

[
−z(α/2) ≤

√
n(X̄ − µ)

S
≤ z(α/2)

]
→ 1− α

as n → ∞. Rearranging the inequalities above in the same way as the previous example
yields a 100(1 − α)% asymptotic confidence interval X̄ ± S√

n
z(α/2) for µ. We expect

this interval to be accurate (meaning its coverage of µ is close to 100(1 − α)%) for large
n—indeed, for large n, z(α/2) ≈ tn−1(α/2) because the tn−1 distribution is very close to the
standard normal distribution, so that this interval is almost the same as the exact interval
of the previous example.

This method may be applied to construct an approximate confidence interval from any
asymptotically normal estimator, as we will see in the following examples.
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Example 18.2. Let X1, . . . , Xn
IID∼ Poisson(λ). To construct an asymptotic confidence

interval for λ, let’s start with the estimator λ̂ = X̄. By the Central Limit Theorem,

√
n(λ̂− λ)→ N (0, λ).

We don’t know the variance λ of this limiting normal distribution, but we can estimate it
by λ̂. By the Law of Large Numbers, λ̂→ λ in probability as n→∞, i.e. λ̂ is consistent for
λ. Then by the Continuous Mapping Theorem and Slutsky’s Lemma,

√
n(λ̂− λ)√

λ̂
=

√
λ√
λ̂
×
√
n(λ̂− λ)√

λ
→ N (0, 1),

so

Pλ

[
−z(α/2) ≤

√
n(λ̂− λ)√

λ̂
≤ z(α/2)

]
→ 1− α.

Rearranging these inequalities yields the asymptotic 100(1 − α)% confidence interval λ̂ ±√
λ̂
n
z(α/2).
For various values of λ and n, the table below shows the simulated true probabilities that

the 90% and 95% confidence intervals constructed in this way cover λ:

Desired coverage: 90% Desired coverage: 95%
λ = 0.1 λ = 1 λ = 5 λ = 0.1 λ = 1 λ = 5

n = 10 0.63 0.91 0.90 0.63 0.93 0.95
n = 30 0.79 0.89 0.90 0.80 0.93 0.95
n = 100 0.91 0.90 0.90 0.93 0.94 0.95

(Meaning, we simulatedX1, . . . , Xn
IID∼ Poisson(λ), computed the confidence interval, checked

whether it contained λ, and repeated this B = 1,000,000 times. The table reports the frac-
tion of simulations for which the interval covered λ.) We observe that coverage is closer to
the desired levels for larger values of n, as well as for larger values of λ. For small n and/or
small λ, the normal approximation to the distribution of λ̂ is inaccurate, and the simulations
show that we underestimate the variability of λ̂.

Example 18.3. More generally, let {f(x|θ) : θ ∈ Ω} be any parametric model satisfying the
regularity conditions of Theorem 14.1, where θ is a single parameter. To obtain a confidence
interval for θ, consider the MLE θ̂, which satisfies

√
n(θ̂ − θ)→ N (0, I(θ)−1)

as n → ∞. We may estimate I(θ) by the plugin estimator I(θ̂). If I(θ) is continuous in
θ and θ̂ is consistent for θ, then the Continuous Mapping Theorem implies I(θ̂) → I(θ) in
probability, and hence

√
nI(θ̂)(θ̂ − θ) =

√
I(θ̂)√
I(θ)

×
√
nI(θ)(θ̂ − θ)→ N (0, 1).
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So

Pθ
[
−z(α/2) ≤

√
nI(θ̂)(θ̂ − θ) ≤ z(α/2)

]
→ 1− α,

and rearranging yields the asymptotic 100(1 − α)% confidence interval θ̂ ± 1√
nI(θ̂)

z(α/2).

This is oftentimes called the Wald interval for θ.

Example 18.4. Let X1, . . . , Xn
IID∼ Bernoulli(p). Suppose we wish to construct a confidence

interval for the log-odds g(p) = log p
1−p . In Lecture 17, we showed using the delta method

that
√
n(g(p̂)− g(p))→ N

(
0,

1

p(1− p)

)
,

where p̂ = X̄. Since p̂→ p in probability, by the Continuous Mapping Theorem and Slutsky’s
Lemma,√

np̂(1− p̂)(g(p̂)− g(p)) =

√
p̂(1− p̂)√
p(1− p)

√
np(1− p)(g(p̂)− g(p))→ N (0, 1),

so
Pp
[
−z(α/2) ≤

√
np̂(1− p̂)(g(p̂)− g(p)) ≤ z(α/2)

]
→ 1− α.

An asymptotic 100(1− α)% confidence interval for the log-odds g(p) = log p
1−p is then

[L(p̂), U(p̂)] :=

[
log

p̂

1− p̂
−

√
1

np̂(1− p̂)
z(α/2), log

p̂

1− p̂
+

√
1

np̂(1− p̂)
z(α/2)

]
.

If we wish to obtain a confidence interval for the odds p
1−p rather than the log-odds,

note that P[L(p̂) ≤ log p
1−p ≤ U(p̂)] = P[eL(p̂) ≤ p

1−p ≤ eU(p̂)], so that [eL(p̂), eU(p̂)] is a

confidence interval for the odds. This interval is not symmetric around the estimate p̂
1−p̂ ,

and is different from what we would have obtained if we instead applied the delta method
directly to g(p) = p

1−p . The interval [eL(p̂), eU(p̂)] for the odds is typically used in practice—

the distribution of log p̂
1−p̂ is less skewed than that of p̂

1−p̂ for small to moderate n, so the
normal approximation and resulting confidence interval are more accurate if we consider
odds on the log scale.

Let us caution that in the construction of these asymptotic confidence intervals, a number
of different approximations are being made:

• The true distribution of
√
n(θ̂ − θ) is being approximated by a normal distribution.

• The true variance of this normal distribution, say I(θ)−1, is being approximated by a
plugin estimate I(θ̂)−1.

• In the case where we are interested in g(θ) and g is a nonlinear function, the value g(θ̂)
is being approximated by the Taylor expansion g(θ) + (θ̂ − θ)g′(θ). (This is what is
done in the delta method.)

These approximations are all valid in the limit n→∞, but their accuracy is not guaranteed
for the finite sample size n of any given problem. Coverage of asymptotic confidence intervals
should be checked by simulation, as Example 18.2 illustrates that they might be severely
overconfident for small n.
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