
STATS 200: Introduction to Statistical Inference
Lecture 19: The bootstrap



What is the bootstrap?

The bootstrap (Efron, 1979) refers to a simulation-based
approach to understand the accuracy of statistical estimates.

There are many variants of the bootstrap; it is more of an idea
underlying a collection of methods, rather than one single method.



Simulating the standard error

Typical question of interest: Given X1, . . . ,Xn
IID∼ f (x |θ), what is

the standard error of an estimator θ̂ for θ?

Previous lectures: Use asymptotic theory to study the sampling
distribution and variance of θ̂, when n is large.

The simulation approach: Repeatedly simulate

X ∗1 , . . . ,X
∗
n

IID∼ f (x |θ), compute θ̂∗ from X ∗1 , . . . ,X
∗
n , and take the

empirical standard deviation of θ̂∗ across simulations.



The bootstrap principle

We can’t actually simulate X ∗1 , . . . ,X
∗
n

IID∼ f (x |θ) in practice,
because we don’t know θ to begin with.

The bootstrap idea: Simulate X ∗1 , . . . ,X
∗
n from an estimate of the

true data distribution.

This is a plugin principle analogous to how we use I (θ̂) for I (θ)
when estimating the standard error of the MLE. Here, we “plug in”
an estimate of the data distribution for the true data distribution,
and then simulate new data from this estimate.

The name comes from the English saying, “To pull oneself up by
one’s own bootstraps”
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Example: Bootstrap standard error in the Poisson model

Numbers of alpha particles emitted by a sample of Americium-241
in 10-second intervals (Rice Chapter 8):
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Example: Bootstrap standard error in the Poisson model

Fitting a Poisson(λ) model to this data, the MLE is λ̂ = X̄ = 8.37.
What is the standard error of this estimate?

Using asymptotic theory (either by CLT or Fisher information):

√
n(λ̂− λ)→ N (0, λ).

We can estimate the standard error as
√

8.37/n = 0.083.

Using the bootstrap: Repeatedly simulate

X ∗1 , . . . ,X
∗
n

IID∼ Poisson(8.37),

compute λ̂∗ = X̄ ∗ for each simulation, and compute the empirical
standard deviation of λ̂∗ across simulations.
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Example: Bootstrap standard error in the Poisson model

# Input: Data vector X

lambda_hat = mean(X)

n = length(X)

# Perform 100000 bootstrap simulations

B=100000

lambda_hat_star = numeric(B)

for (i in 1:B) {

X_star = rpois(n,lambda_hat)

lambda_hat_star[i] = mean(X_star)

}

print(sd(lambda_hat_star))

We obtain the same answer, 0.083.



The parametric bootstrap

The method on the preceding slides is called the parametric
bootstrap. Suppose, more generally, we are interested in the
standard error of some statistic T := T (X1, . . . ,Xn).

1. Fit a parametric model f (x |θ) to X1, . . . ,Xn using an estimate
θ̂ (say, the MLE)

2. For i = 1, 2, . . . ,B:

a. Simulate X ∗
1 , . . . ,X

∗
n

IID∼ f (x |θ̂)
b. Compute the statistic T ∗ := T (X ∗

1 , . . . ,X
∗
n ) on the data

X ∗
1 , . . . ,X

∗
n

3. Return the empirical standard deviation of T ∗ across the B
simulations

This is called the parametric bootstrap because the estimated
distribution from which we simulate new data is obtained by fitting
a parametric model f (x |θ).



The nonparametric bootstrap

A different method of performing the bootstrap is to “estimate”
the true data distribution by the empirical distribution of the
data, which is the discrete distribution that places mass 1

n at each
of the observed data values X1, . . . ,Xn.

I.e., given the observed data X1, . . . ,Xn, this is the distribution of
a random variable that can equal each of these observed values
with probability 1

n .

Q: What is the CDF of this empirical distribution?



The nonparametric bootstrap
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A: The empirical CDF Fn(t) = 1
n

∑n
i=1 1{Xi ≤ t}, which equals

the fraction of data values ≤ t. This estimates the true CDF F (t).



The nonparametric bootstrap

Simulating IID samples X ∗1 , . . . ,X
∗
n from the empirical distribution

of the data amounts to sampling, with replacement, n values from
X1, . . . ,Xn.

(Note that it is highly likely for some of the values X ∗1 , . . . ,X
∗
n to

be the same, even if the original values X1, . . . ,Xn were all
distinct.)

This method of simulation is called the nonparametric bootstrap.



The nonparametric bootstrap

Suppose we are interested in the standard error of a statistic
T := T (X1, . . . ,Xn). The nonparametric bootstrap does the
following:

1. For i = 1, 2, . . . ,B:

a. Simulate X ∗
1 , . . . ,X

∗
n as n samples with replacement from the

original data X1, . . . ,Xn.
b. Compute the statistic T ∗ = T (X ∗

1 , . . . ,X
∗
n ) on the data

X ∗
1 , . . . ,X

∗
n

2. Return the empirical standard deviation of T ∗ across the B
simulations

There is no assumption of a parametric model!



Example: Bootstrap standard error in the Poisson model

# Input: Data vector X

n = length(X)

# Perform 100000 bootstrap simulations

B=100000

lambda_hat_star = numeric(B)

for (i in 1:B) {

X_star = sample(X, size=n, replace=TRUE)

lambda_hat_star[i] = mean(X_star)

}

print(sd(lambda_hat_star))

We obtain an estimated standard error of 0.085.



MLE in a misspecified model, revisited

Let’s consider what happens when we fit the Poisson(λ) model to
data X1, . . . ,Xn that do not follow a Poisson distribution. We
compute the MLE λ̂ = X̄ .

The true standard error of this MLE is σ/
√
n where σ is the

standard deviation of the true distribution for the Xi ’s.

The Fisher information is 1/λ, so the plugin Fisher information

estimate of the standard error is
√
λ̂/n =

√
X̄/n. This is incorrect

if the mean of the distribution of Xi ’s is not the same as its
variance.
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MLE in a misspecified model, revisited

The sandwich estimate of the standard error of λ̂ estimates
separately Var[z(X , λ)] and E[z ′(X , λ)]:

log f (x |λ) = x log λ− λ− log x!

z(x , λ) =
∂

∂λ
log f (x |λ) =

x

λ
− 1

z ′(x , λ) =
∂2

∂λ2
log f (x |λ) = − x

λ2

Sample variance of z(X1, X̄ ), . . . , z(Xn, X̄ ): S2
X/X̄

2

Sample mean of z ′(X1, X̄ ), . . . , z ′(Xn, X̄ ): −1/X̄

So the sandwich estimate of the standard error of λ̂ is SX/
√
n,

which is a correct estimate of σ/
√
n.
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MLE in a misspecified model, revisited

For a simulated sample X1, . . . ,X100
IID∼ Geometric(0.3):

Fisher information estimate
√
X̄/n: 0.14

Sandwich estimate SX/
√
n: 0.22

Parametric bootstrap: 0.14
Nonparametric bootstrap: 0.22

Even if the statistic T of interest is motivated by a parametric
model (for example, T = θ̂ is the MLE in this model), the
nonparametric bootstrap may be used to estimate the standard
error of T to guard against model misspecification.



The real world and the bootstrap world

Image from Efron and Tibshirani, An Introduction to the Bootstrap, 1993.



Bootstrap confidence intervals

There are many ways of using the bootstrap to construct a
confidence interval for θ, using an estimator θ̂. We will discuss
three simple methods in this class.

1. The normal interval:

Let θ̂ := θ̂(X1, . . . ,Xn) be the estimate computed on the original
data, and let ŝe be the bootstrap estimate of the standard error of
θ̂. Construct a 100(1− α)% confidence interval as

θ̂ ± z(α/2) ŝe.

Rationale: This is the procedure discussed last lecture, except
replacing an asymptotic estimate of the standard error of θ̂ by a
bootstrap estimate. It is valid if the distribution of θ̂ is
approximately normal around θ.



Bootstrap confidence intervals

2. The percentile interval:

Let θ̂∗(α/2) and θ̂∗(1−α/2) be the α/2 and 1− α/2 quantiles of the
simulated values of θ̂∗. (If we performed B bootstrap simulations,
these are the (α/2× B)th and ((1− α/2)× B)th ordered values of
θ̂∗.) Construct a 100(1− α)% confidence interval as

[θ̂∗(α/2), θ̂∗(1−α/2)].

Rationale: If θ̂ is close to θ, then the simulated distribution of θ̂∗

should be close to the theoretical distribution of θ̂.



Bootstrap confidence intervals

3. The “basic bootstrap” interval:

Estimate the distribution of θ̂ − θ by the simulated distribution of
θ̂∗ − θ̂: The simulated α/2 and (1− α/2) quantiles of θ̂∗ − θ̂ are
qα/2 := θ̂∗(α/2) − θ̂ and q1−α/2 := θ̂∗(1−α/2) − θ̂. Since

θ = θ̂ − (θ̂ − θ), construct a 100(1− α)% confidence interval for θ
as

[θ̂ − q1−α/2, θ̂ − qα/2] = [2θ̂ − θ̂∗(1−α/2), 2θ̂ − θ̂∗(α/2)].

Rationale: The deviations of θ̂∗ from θ̂ in the “Bootstrap World”
should approximate the deviations of θ̂ from θ in the “Real World”.



Comparison of intervals

I If the distribution of θ̂∗ around θ̂ is symmetric, then the basic
bootstrap interval and the percentile interval are equivalent
(because θ̂∗(α/2) + θ̂∗(1−α/2) ≈ 2θ̂).

I If in addition, the distribution of θ̂∗ around θ̂ is normal, then
these are equivalent to the normal interval.

I If the sampled values of θ̂∗ do not appear normally distributed
around θ̂, then the normal interval should not be used.

I Rice sticks to the “basic bootstrap” interval, and says of the
percentile interval: “Although this direct equation of quantiles
of the bootstrap sampling distribution with confidence limits
may seem initially appealing, its rationale is somewhat
obscure.”
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Comparison of intervals

I Argument for the basic bootstrap interval: Suppose θ̂ is a
positively biased estimate of θ. Then we expect θ̂∗ to be a
positively biased estimate of θ̂. Hence the percentile interval
“worsens” the bias of θ̂, whereas the basic bootstrap interval
corrects for it.

I Argument for the percentile interval: It is invariant under
reparametrization—let η = g(θ) where g is an increasing
function. If we compute the percentile interval
[θ∗(α/2), θ∗(1−α/2)] and then reparametrize, we get the interval
[g(θ∗(α/2)), g(θ∗(1−α/2))] for η. If we reparametrize first by
η∗ = g(θ∗) and then compute the interval, we get
[η∗(α/2), η∗(1−α/2)], which is the same thing. This doesn’t hold
for the basic bootstrap interval: The quantiles of g(2θ̂ − θ̂∗)
are not the same as the quantiles of 2g(θ̂)− g(θ̂∗).
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Other intervals

There are other bootstrap intervals with theoretical and empirical
support for having more accurate coverage:

I Studentized bootstrap intervals—estimate the distribution of
θ̂−θ
ŝe(θ̂)

using the simulated distribution of θ̂∗−θ̂
ŝe∗(θ̂∗)

.

I Bias-corrected and accelerated intervals—explicitly adjust for
the bias and skewness of the bootstrap distribution.

We won’t discuss these procedures in this class.


