
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 21 — Prior distributions

This lecture is a discussion of some topics on the interpretation and use of Bayesian priors
and their influence on posterior inference.

21.1 Conjugate priors and improper priors

Last lecture, we saw two examples of conjugate priors:

1. If X1, . . . , Xn
IID∼ Poisson(λ), then a conjugate prior for λ is Gamma(α, β), and the

corresponding posterior given X1 = x1, . . . , Xn = xn is Gamma(s + α, n + β) where
s = x1 + . . .+ xn. A Bayesian estimate of λ is the posterior mean

λ̂ =
s+ α

n+ β
=

n

n+ β
· s
n

+
β

n+ β
· α
β
.

2. If X1, . . . , Xn
IID∼ Bernoulli(p), then a conjugate prior for p is Beta(α, β), and the

corresponding posterior given X1 = x1, . . . , Xn = xn is Beta(s + α, n − s + β).1 A
Bayesian estimate of p is the posterior mean

p̂ =
s+ α

n+ α + β
=

n

n+ α + β
· s
n

+
α + β

n+ α + β
· α

α + β
.

In addition to being mathematically convenient, conjugate priors oftentimes have intuitive
interpretations: In example 1 above, the posterior mean behaves as if we observed, a priori,
β additional count observations that sum to α. β may be interpreted as an effective prior
sample size and α/β as a prior mean, and the posterior mean is a weighted average of the
prior mean and the data mean. In example 2 above, the posterior mean behaves as if we
observed, a priori, α additional heads and β additional tails. α+β is an effective prior sample
size, α/(α + β) is a prior mean, and the posterior mean is again a weighted average of the
prior mean and the data mean. These interpretations may serve as a guide for choosing the
prior parameters α and β.

Sometimes it is convenient to use the formalism of Bayesian inference, but with an “unin-
formative prior” that does not actually impose prior knowledge, so that the resulting analysis
is more objective. In both examples above, the priors are “uninformative” for the posterior
mean when α and β are small. We may take this idea to the limit by considering α = β = 0.
As the PDF of the Gamma distribution is proportional to xα−1e−βx on (0,∞), the “PDF”
for α = β = 0 may be considered to be

f(x) ∝ x−1.

1We assumed α = β last lecture so that the prior is centered around 1/2, but the same calculation of the
posterior distribution holds when α 6= β.
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Similarly, as the PDF of the Beta distribution is proportional to xα−1(1 − x)β−1 on (0, 1),
the “PDF” for α = β = 0 may be considered to be

f(x) ∝ x−1(1− x)−1.

These are not real probability distributions: There is no such distribution as Gamma(0, 0),
and f(x) ∝ x−1 does not actually describe a valid PDF on (0,∞), because

∫
x−1dx = ∞

so that it is impossible to choose a normalizing constant to make this PDF integrate to
1. Similarly, there is no such distribution as Beta(0, 0), and f(x) ∝ x−1(1 − x)−1 does not
describe a valid PDF on (0, 1). These types of priors are called improper priors.

Nonetheless, we may formally carry out Bayesian analysis using improper priors, and
this oftentimes yields valid posterior distributions: In the Poisson example, we obtain the
posterior PDF

fΛ|X(λ|x1, . . . , xn) ∝ fX|Λ(x1, . . . , xn|λ)fΛ(λ) ∝ λse−nλ × λ−1 = λs−1e−nλ,

which is the PDF of Gamma(s, n). In the Bernoulli example, we obtain the posterior PDF

fP |X(p|x1, . . . , xn) ∝ fX|P (x1, . . . , xn|p)fP (p) ∝ ps(1−p)n−s×p−1(1−p)−1 = ps−1(1−p)n−s−1,

which is the PDF of Beta(s, n− s). These posterior distributions are real probability distri-
butions (as long as s > 0 in the Poisson example and s, n− s > 0 in the Bernoulli example),
and may be thought of as approximations to the posterior distributions that we would have
obtained if we used proper priors with small but positive values of α and β.

21.2 Normal approximation for large n

For any fixed α, β in the above examples, as n → ∞, the influence of the prior diminishes
and the posterior mean becomes close to the MLE s/n. This is true more generally for
parametric models satisfying mild regularity conditions, and in fact the posterior distribution
is approximately a normal distribution centered at the MLE θ̂ with variance 1

nI(θ̂)
for large

n, where I(θ) is the Fisher information. We sketch the argument for why this occurs:
Consider Bayesian inference applied with the prior fΘ(θ), for a parametric model fX|Θ(x|θ).

Let X1, . . . , Xn
IID∼ fX|Θ(x|θ), and let

l(θ) =
n∑
i=1

log fX|Θ(xi|θ)

be the usual log-likelihood. Then the posterior distribution of Θ is given by

fΘ|X(θ|x1, . . . , xn) ∝ fX|Θ(x1, . . . , xn|θ)fΘ(θ) = exp(l(θ))fΘ(θ).

Applying a second-order Taylor expansion of l(θ) around the MLE θ = θ̂,

l(θ) ≈ l(θ̂) + (θ − θ̂)l′(θ̂) +
1

2
(θ − θ̂)2l′′(θ̂)

≈ l(θ̂)− 1

2
(θ − θ̂)2 · nI(θ̂),
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where the second equality follows because l′(θ̂) = 0 if θ̂ is the MLE, and l′′(θ̂) ≈ −nI(θ̂) for
large n. Since θ̂ is a function of the data x1, . . . , xn and doesn’t depend on θ, we may absorb
exp(l(θ̂)) into the proportionality constant to obtain

fΘ|X(θ|x1, . . . , xn) ∝ exp

(
−1

2
(θ − θ̂)2 · nI(θ̂)

)
fΘ(θ).

For large n, the value of exp(−1
2
(θ − θ̂)2 · nI(θ̂)) is small unless θ is within order 1/

√
n

distance from θ̂. In this region of θ, the prior fΘ(θ) is approximately constant and equal to
fΘ(θ̂). Absorbing this constant also into the proportionality factor in ∝, we finally arrive at

fΘ|X(θ|x1, . . . , xn) ∝ exp

(
−1

2
(θ − θ̂)2 · nI(θ̂)

)
.

This describes a normal distribution for Θ with mean θ̂ and variance 1

nI(θ̂)
.

To summarize, the posterior mean of Θ is, for large n, approximately the MLE θ̂. Further-

more, a 100(1−α)% Bayesian credible interval is approximately given by θ̂±z(α/2)/

√
nI(θ̂),

which is exactly the 100(1 − α)% Wald confidence interval for θ. In this sense, frequentist
and Bayesian methods yield similar inferences for large n.

21.3 Prior distributions and average MSE

Last lecture we introduced the prior distribution for Θ as something that encodes our prior
belief about its value. A different (but related) interpretation and motivation for the prior
comes from the following considerations:

Let’s return to the frequentist setting where we assume that there is a true parameter
θ for a parametric model {f(x|θ) : θ ∈ Ω}. Suppose we have two estimators for θ based
on data X1, . . . , Xn ∼ f(x|θ): θ̂1 and θ̂2. Which estimator is “better”? Without appealing
to asymptotic (large n) arguments, one answer to this question is to compare their mean-
squared-errors:

MSE1(θ) = Eθ[(θ̂1 − θ)2] = Variance of θ̂1 + (Bias of θ̂1)2

MSE2(θ) = Eθ[(θ̂2 − θ)2] = Variance of θ̂2 + (Bias of θ̂2)2

The estimator with smaller MSE is “better”.
Unfortunately, the problem with this approach is that the MSEs might depend on the

true parameter θ (hence why we have written MSE1 and MSE2 as functions of θ in the above),

and neither may be uniformly better than the other. For example, suppose X1, . . . , Xn
IID∼

N (θ, 1). Let θ̂1 = X̄; this is unbiased with variance 1
n
, so its MSE is 1

n
. Let θ̂2 ≡ 0 be the

constant estimator that always estimates θ by 0. This has bias −θ and variance 0, so its
MSE is θ2. If the true parameter θ happens to be close to 0—more specifically, if |θ| is less
than 1/

√
n—then θ̂2 is “better”, and otherwise θ̂1 is “better”.

To resolve this ambiguity, we might consider a weighted average MSE,∫
MSE(θ)w(θ)dθ,
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where w(θ) is a weight function over the parameter space such that
∫

Ω
w(θ)dθ = 1, and find

the estimator that minimizes this weighted average. This weighted average MSE is called
the Bayes risk. Writing the expectation in the definition of the MSE as an integral, and
letting x denote the data and f(x|θ) denote the PDF of the data, we may write the Bayes
risk of an estimator θ̂ as ∫ (∫

(θ̂(x)− θ)2f(x|θ)dx
)
w(θ)dθ.

Exchanging the order of integration, this is∫ (∫
(θ̂(x)− θ)2f(x|θ)w(θ)dθ

)
dx.

In order to minimize the Bayes risk, for each possible value x of the observed data, θ̂(x)
should be defined so as to minimize∫

(θ̂(x)− θ)2f(x|θ)w(θ)dθ.

Let us now interpret w(θ) as a prior fΘ(θ) for the parameter Θ, and f(x|θ) as the likelihood
fX|Θ(x|θ) given Θ = θ. Then∫

(θ̂(x)− θ)2f(x|θ)w(θ)dθ =

∫
(θ̂(x)− θ)2fX,Θ(x, θ)dθ = fX(x)

∫
(θ̂(x)− θ)2fΘ|X(θ|x)dθ.

So given the observed data x, θ̂(x) should be defined to minimize∫
(θ̂(x)− θ)2fΘ|X(θ|x)dθ = E[(θ̂(x)−Θ)2],

where the expectation is with respect to the posterior distribution of Θ for the fixed and
observed value of x. For any random variable Y , E[(c − Y )2] is minimized over c when
c = E[Y ]—hence the minimizer θ̂(x) of the above is exactly the posterior mean of Θ. We
have thus arrived at the following conclusion:

The posterior mean of Θ for the prior fΘ(θ) is the estimator that minimizes the average
mean-squared-error

∫
MSE(θ)fΘ(θ)dθ.

Thus a Bayesian prior may be interpreted as the weighting of parameter values for which we
wish to minimize the weighted-average mean-squared-error.
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