
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 23 — Hypothesis testing for categorical data

23.1 Test of independence

Last lecture, we introduced the generalized likelihood ratio test, and we applied it to an
example of testing the hypothesis of Hardy-Weinberg equilibrium in a population at a single
diallelic locus. This was an example of testing whether the parameters of a multinomial
model satisfy certain additional constraints.

Here is a second example of this type of hypothesis testing problem:

Example 23.1 (Independence test). The following table (from the GSS 2008) cross-classifies
a random sample of 1972 people by gender and by political party identification:

dem indep repub
female 422 381 273
male 299 365 232

In this sample, approximately 39% of females identified as democrat and 25% identified
as republican, while approximately 33% of males identified as democrat and 26% identi-
fied as republican. Is this significant evidence of an association between gender and party
identification in the population from which this sample was drawn?

Denote the observed counts by Nij for i = 1, 2 and j = 1, 2, 3. We may model these
counts as multinomial with n = 1972 total observations and with outcome probabilities pij
for i = 1, 2 and j = 1, 2, 3. Denote by pi· =

∑
j pij and p·j =

∑
i pij the marginal row and

column probabilities. If there is no association between gender and party identification, then
pij = pi·p·j. Hence we wish to test the independence null hypothesis

H0 : pij = pi·p·j for all i = 1, 2 and j = 1, 2, 3.

The dimension of this sub-model may be determined as follows: The five row and column
marginal probabilities p1·, p2·, p·1, p·2, p·3 specify all of the multinomial cell probabilities under
H0. However, they satisfy the constraints p1·+p2· = 1 and p·1+p·2+p·3 = 1, so this sub-model
has dimension 5 − 2 = 3. The full multinomial model has dimension 5, so the generalized
likelihood ratio statistic has approximate null distribution χ2

2 (since 5− 3 = 2).

To derive the form of the likelihood ratio statistic in the above example, suppose more
generally that we observe (N1, . . . , Nk) ∼ Multinomial(n, (p1, . . . , pk)), and we wish to test
the null hypothesis H0 : (p1, . . . , pk) ∈ Ω0, where Ω0 represents some sub-model. The
multinomial likelihood is given by

lik(p1, . . . , pk) =

(
n

N1, . . . , Nk

) k∏
i=1

pNi
i .
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Letting p̂0,i denote the MLEs in this sub-model Ω0 and p̂i denote the MLEs in the full
multinomial model, the generalized likelihood ratio is

Λ =
lik(p̂0,1, . . . , p̂0,k)

lik(p̂1, . . . , p̂k)
=

k∏
i=1

(
p̂0,i
p̂i

)Ni

,

so

−2 log Λ = 2
k∑

i=1

Ni log
p̂i
p̂0,i

.

Recall that the full model MLEs are given by p̂i = Ni/n, by Example 13.4 of Lecture 13.
Let us write Ei = p̂0,in, which denotes the “expected count” for outcome i corresponding to
the sub-model MLE p̂0,i. Then we obtain the simple formula

−2 log Λ = 2
k∑

i=1

Ni log
Ni

Ei

. (23.1)

Example 23.2 (Independence test (cont’d)). Applying equation (23.1) to Example 23.1, we
must compute the sub-model MLEs. Under H0, the likelihood as a function of the row and
column marginal probabilities is

lik(p1·, p2·, p·1, p·2, p·3) =

(
n

N11, . . . , N23

) 2∏
i=1

3∏
j=1

(pi·p·j)
Nij

=

(
n

N11, . . . , N23

) 2∏
i=1

pNi·
i·

3∏
j=1

p
N·j
·j ,

where Ni· =
∑

j Nij and N·j =
∑

iNij are the row and column marginal counts. Taking the
logarithm and introducing Lagrange multipliers for the constraints, we wish to maximize

log

(
n

N11, . . . , N23

)
+

2∑
i=1

Ni· log pi· +
3∑

j=1

N·j log p·j + λ

(
2∑

i=1

pi· − 1

)
+ µ

(
3∑

j=1

p·j − 1

)
.

Setting the derivatives with respect to pi· and p·j equal to 0 yields the equations Ni·/pi·+λ = 0
and N·j/p·j + µ = 0, so pi· = −Ni·/λ and p·j = −N·j/µ. Picking the Lagrange multipliers
λ = −n and µ = −n enforces the constraints, and we obtain the MLEs p̂i· = Ni·/n and
p̂·j = N·j/n. Then the sub-model MLEs for pij are given by p̂0,ij = (Ni·/n)(N·j/n).

For the data of Example 23.1, the row and column marginal counts are given by N1· =
1076, N2· = 896, N·1 = 721, N·2 = 746, and N·3 = 505. Computing the sub-model MLEs
p̂0,ij and multiplying by n, we obtain the table of expected counts Eij:

dem indep repub
female 393.4 407.0 275.5
male 327.6 339.0 229.5

Applying equation (23.1) with the 6 observed and expected counts yields −2 log Λ = 8.31.
Letting F denote the CDF of the χ2

2 distribution, we obtain a p-value for the generalized
likelihood ratio test of 1 − F (8.31) = 0.016, so there is reasonably strong evidence of an
association between gender and party identification.
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23.2 Test of homogeneity

Consider now a slightly different problem: We have independent count observations from 2
multinomial distributions, each with k outcomes: (N1, . . . , Nk) ∼ Multinomial(n, (p1, . . . , pk))
and (M1, . . . ,Mk) ∼ Multinomial(m, (q1, . . . , qk)), where n and m are known sample sizes.
We wish to test the homogeneity null hypothesis

H0 : pi = qi for all i = 1, . . . , k.

Example 23.3 (Homogeneity test). This example is from Rice Section 13.3. When Jane
Austen died, she left the novel Sandition partially completed. An admirer finished the novel,
attempting to emulate Jane Austen’s style. The following table counts the occurrences of six
different short words in Chapters 1 and 6 of Sandition, written by Austen, and in Chapters
12 and 24 of Sandition, written by the admirer:

a an this that with without
Ch. 1 and 6 101 11 15 37 28 10

Ch. 12 and 24 83 29 15 22 43 4

Is there a significant difference between the relative frequencies of these words between the
two authors?

Let us model the counts from Chapters 1 and 6 as Multinomial(202, (p1, . . . , p6)) and
those from Chapters 12 and 24 as Multinomial(196, (q1, . . . , q6)). Then we wish to test the
homogeneity null hypothesis that pi = qi for all i = 1, . . . , 6.

To derive the generalized likelihood ratio test, note that the joint likelihood of all param-
eters is the product of the two multinomial likelihoods:

lik(p1, . . . , pk, q1, . . . , qk) =

(
n

N1, . . . , Nk

) k∏
i=1

pNi
i ×

(
m

M1, . . . ,Mk

) k∏
i=1

qMi
i . (23.2)

Let p̂i and q̂i denote the full model MLEs, and let p̂0,i = q̂0,i denote the sub-model MLEs.
Then the generalized likelihood ratio statistic is

Λ =
k∏

i=1

(
p̂0,i
p̂i

)Ni k∏
i=1

(
q̂0,i
q̂i

)Mi

,

so

−2 log Λ = 2
k∑

i=1

(
Ni log

p̂i
p̂0,i

+Mi log
q̂i
q̂0,i

)
. (23.3)

In the full model with two independent and unconstrained multinomial distributions, the
MLEs are simply p̂i = Ni/n and q̂i = Mi/m. Letting Ei = p̂0,in and Fi = q̂0,im denote the
expected counts in the sub-model, we may write the above in the simple form

−2 log Λ = 2
k∑

i=1

(
Ni log

Ni

Ei

+Mi log
Mi

Fi

)
.
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To compute the above statistic, we need to compute the sub-model MLEs p̂0,i = q̂0,i.
Under H0, the likelihood in equation (23.2) simplifies to

lik(p1, . . . , pk) =

(
n

N1, . . . , Nk

)(
m

M1, . . . ,Mk

) k∏
i=1

pNi+Mi
i .

Taking the logarithm and introducing a Lagrange multiplier for the constraint p1+ . . .+pk =
1, we wish to maximize

log

((
n

N1, . . . , Nk

)(
m

M1, . . . ,Mk

))
+

k∑
i=1

(Ni +Mi) log pi + λ

(
k∑

i=1

pi − 1

)
.

Setting the derivatives with respect to pi equal to 0, we obtain the equations (Ni +Mi)/pi +
λ = 0, so pi = −(Ni +Mi)/λ. Choosing the Lagrange multiplier λ = −(n+m) enforces the
constraints, and we obtain the sub-model MLEs p̂0,i = q̂0,i = (Ni +Mi)/(n+m).

Example 23.4 (Homogeneity test (cont’d)). In the data of Example 23.3, we have the
marginal word counts N1 + M1 = 184, N2 + M2 = 40, N3 + M3 = 30, N4 + M4 = 59,
N5 +M5 = 71, and N6 +M6 = 14. This yields the table of expected counts

a an this that with without
Ch. 1 and 6 93.4 20.3 15.2 29.9 36.0 7.1

Ch. 12 and 24 90.6 19.7 14.8 29.1 35.0 6.9

Applying equation (23.3) with the observed and expected counts, we obtain −2 log Λ = 19.8.
The dimensionality of the sub-model in this example is 5 (6 parameters minus 1 constraint),
and the dimensionality of the full model is 10 (12 parameters minus 2 constraints), so the
null distribution of −2 log Λ is approximately χ2

5. Letting F denote the CDF of the χ2
5

distribution, we obtain a p-value of 1− F (19.8) = 0.0014, so there is significant evidence of
a difference in writing style between Austen and her admirer.

Remark 23.5. In both Examples 23.1 and 23.3, we wanted to test whether there is a sig-
nificant difference in the relative frequencies between the two rows. The distinction between
these examples is only in the sampling design/modeling assumption: In Example 23.1, we
treated the counts from all rows as observations from a single multinomial distribution, be-
cause (we believe that) the GSS 2008 survey sampled a fixed total number of people rather
than a fixed number of people of each gender. In Example 23.3, we modeled each row as a
separate multinomial distribution with a fixed row sum.

In fact, the table of expected counts, generalized likelihood ratio statistic, and degrees of
freedom for the test are all the same under the two different modeling assumptions (although
we derived them in two different ways), so the tests of independence and of homogeneity are
procedurally the same, and the distinction between these is sometimes blurred in practice.
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