
STATS 200: Introduction to Statistical Inference Autumn 2016

Lecture 25 — The linear model

25.1 The linear model

Example 25.1. When a string instrument sustains a note at a particular pitch, the resulting
sound wave is periodic with some fixed frequency f (say 440Hz). For a “pure” tone at this
pitch, the sound wave is a perfect sinusoidal wave with frequency f , but the sound produced
by any real string instrument is not a pure tone. Instead, it is a superposition of sinusoidal
waves with frequencies f , 2f , 3f , 4f , etc., corresponding to different vibrating modes of the
string. These frequencies are called the resonance harmonics, and the relative volumes, or
amplitudes, of the resonance harmonics determine the timbre or “color” of the sound.

A recording device measures the sound wave produced by an instrument (sustaining a
single note) at n points in time t1, . . . , tn, where the measurements are contaminated by white
noise. We consider the problem of estimating the amplitudes of the resonance harmonics
for this instrument. Let Y1, . . . , Yn ∈ R be measurements of the sound wave at these time
points. Suppose, for simplicity, we have scaled our units so that the sine and cosine curves
corresponding to the fundamental frequency f are sin(t) and cos(t). Then, assuming the
existence of resonance harmonics up to frequency kf , we may model each measurement Yi
as

Yi = β1 sin(ti) + β2 cos(ti) + β3 sin(2ti) + β4 sin(2ti) + . . .+ β2k−1 sin(kti) + β2k cos(kti) + εi,
(25.1)

for some coefficients β1, . . . , β2k ∈ R, where the errors εi
IID∼ N (0, σ2

0) correspond to the
white noise and the variance σ2

0 signifies the noise level. If we construct the matrix

X =


sin(t1) cos(t1) · · · sin(kt1) cos(kt1)
sin(t2) cos(t2) · · · sin(kt2) cos(kt2)

...
...

. . .
...

...
sin(tn) cos(tn) · · · sin(ktn) cos(ktn)


and denote its entries as xij, then we may write the above as

Yi =
2k∑
j=1

βjxij + εi,

or more succinctly in matrix notation, for all i = 1, . . . , n, as

Y = Xβ + ε.

Here, Y denotes the column vector (Y1, . . . , Yn), β denotes the column vector (β1, . . . , β2k),
and ε denotes the column vector (ε1, . . . , εn). This is called a linear model.
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More generally, given a vector of responses Y1, . . . , Yn, the linear model models each Yi as
a certain linear combination β1xi1 + . . .+βpxip of corresponding covariates xi1, . . . , xip, plus
IID Gaussian errors. (The coefficients β1, . . . , βp are the same for all n responses Y1, . . . , Yn.)
We will treat the covariates as fixed and known constants. The values of the Gaussian errors
are not directly observed; for simplicity, however, we’ll assume in this lecture that their
variance σ2

0 is known. The parameters of the model are the regression coefficients β1, . . . , βp.
(Much of our analysis in this lecture may be extended to the more realistic setting where σ2

0

is unknown, in which case it would also be a parameter of the model.)

25.2 Statistical inference

In the model of equation (25.1), the amplitudes of the k resonance harmonics are defined

as A1 =
√
β2
1 + β2

2 , A2 =
√
β2
3 + β2

4 , ..., Ak =
√
β2
2k−1 + β2

2k. We will discuss the following

inferential tasks:

• Estimate the amplitudes A1, . . . , Ak

• Provide confidence intervals corresponding to these estimates

Let p = 2k. To write down the likelihood for the linear model, note that Y1, . . . , Yn are
independent and distributed as Yi ∼ N (

∑
j βjxij, σ

2
0). Then

lik(β1, . . . , βp) =
n∏
i=1

1√
2πσ2

0

exp

− 1

2σ2
0

(
Yi −

p∑
j=1

βjxij

)2
 ,

and the log-likelihood is

l(β1, . . . , βp) = −n
2

log(2πσ2
0)− 1

2σ2
0

n∑
i=1

(
Yi −

p∑
j=1

βjxij

)2

. (25.2)

For any σ2
0 > 0, this log-likelihood is maximized when β1, . . . , βk are the least-squares

estimators minimizing the total squared error

err =
n∑
i=1

(
Yi −

p∑
j=1

βjxij

)2

.

So the MLEs β̂1, . . . , β̂k are equal to the least-squares estimators. To compute these MLEs,
we solve the system of p equations for m = 1, . . . , p

0 =
∂l

∂βm
=

1

σ2
0

n∑
i=1

xim

(
Yi −

p∑
j=1

βjxij

)
.

Letting Xm denote the mth column of X, these equations may be written as

0 =
1

σ2
0

XT
m(Y −Xβ),
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or even more succinctly for all m = 1, . . . , p as 0 = 1
σ2
0
XT (Y −Xβ), where both sides of this

equation are vectors of length p. Solving for β yields the MLEs/least-squares estimates

β̂ = (XTX)−1XTY. (25.3)

To estimate an amplitude of a resonance harmonic, say A1 =
√
β2
1 + β2

2 , we may use the

plugin estimate Â1 =

√
β̂2
1 + β̂2

2 .
To obtain a confidence interval for A1, we will derive an approximate standard error for

Â1, by first deriving the sampling distribution of β̂ and then applying the delta method.
We compute the Fisher information IY(β) = −Eβ[∇2l(β)], by computing the second-order
derivatives of l:

∂2l

∂βm∂βl
= − 1

σ2
0

n∑
i=1

ximxil = − 1

σ2
0

XT
mXl

Then the Hessian matrix is ∇2l(β) = − 1
σ2
0
XTX, so IY(β) = 1

σ2
0
XTX. The distribution of β̂

is then approximately N (β, σ2
0(XTX)−1) for large n.1

We now apply the delta method: Defining g(x, y) =
√
x2 + y2, a Taylor expansion yields

Â1 − A1 = g(β̂1, β̂2)− g(β1, β2) ≈
∂g

∂x
(β1, β2)× (β̂1 − β1) +

∂g

∂y
(β1, β2)× (β̂2 − β2)

=
β1√
β2
1 + β2

2

(β̂1 − β1) +
β2√
β2
1 + β2

2

(β̂2 − β2).

Letting c1 = β1/
√
β2
1 + β2

2 , c2 = β2/
√
β2
1 + β2

2 , Z1 = β̂1 − β1, and Z2 = β̂2 − β2, the above

sampling distribution for β̂ implies that (Z1, Z2) is approximately bivariate normal with mean
0 and covariance given by the upper-left 2×2 block of σ2

0(XTX)−1. So Â1−A1 ≈ c1Z1+c2Z2

is approximately normal with mean 0 and variance

Var[c1Z1 + c2Z2] = Cov[c1Z1 + c2Z2, c1Z1 + c2Z2]

= c21 Var[Z1] + c22 Var[Z2] + 2c1c2 Cov[Z1, Z2]

= c21σ
2
0((XTX)−1)11 + c22σ

2
0((XTX)−1)22 + 2c1c2σ

2
0((XTX)−1)12.

Letting ĉ1 = β̂1/

√
β̂2
1 + β̂2

2 and ĉ2 = β̂2/

√
β̂2
1 + β̂2

2 , we may estimate the standard error of

Â1 by

ŝe =
√
ĉ21σ

2
0((XTX)−1)11 + ĉ22σ

2
0((XTX)−1)22 + 2ĉ1ĉ2σ2

0((XTX)−1)12,

and construct a 95% confidence interval for A1 as Â1 ± z(0.025)ŝe.

1In fact, the distribution of β̂ is exactly this multivariate normal distribution even for small n, because Y =
Xβ + ε ∼ N (Xβ, σ2

0I) so that β̂ = (XTX)−1XTY ∼ N ((XTX)−1XTXβ, σ2
0(X

TX)−1XTX(XTX)−1) =
N (β, σ2

0(X
TX)−1) by the property derived in Homework 1, Problem 4(a).
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