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Lecture 28 — The proportional hazards model

28.1 The proportional hazards model

Example 28.1. A clinical trial is performed to study the effect of a drug for maintain-
ing/prolonging remission induced by chemotherapy in the treatment of acute leukemia. (Re-
mission is the disappearance of leukemic cells and other symptoms of the disease.) For each
ith patient in the trial, let Ti denote the length of the remission (or equivalently, the time
until recurrence of the cancer), which we wish to model in terms of patient-specific covari-
ates xi1, . . . , xip. The first covariate xi1 may be a 0–1 variable indicating whether patient i
received the drug or a placebo, and the remaining covariates are other factors, such as the
age of the patient, that may affect the remission length.

Modeling Ti as a continuous, positive-valued random variable with CDF Fi(t) and PDF
fi(t) = F ′i (t), it is useful to think about the distribution of Ti in terms of its hazard function
λi(t), which represents the “instantaneous risk” of recurrence at time t:

λi(t) := lim
δ→0

1

δ
P[Ti ≤ t+ δ | Ti ≥ t].

In other words, for small δ, the probability that a recurrence of the cancer occurs in the time
window [t, t+ δ], conditional on it not having occurred up to time t, is approximately δλi(t).
The hazard function may be expressed in terms of the CDF Fi(t) and PDF fi(t) as

λi(t) = lim
δ→0

P[t ≤ Ti ≤ t+ δ]

δ P[Ti ≥ t]
= lim

δ→0

Fi(t+ δ)− Fi(t)
δ(1− Fi(t))

=
fi(t)

1− Fi(t)
.

To develop some intuition for the hazard function, consider a simple example where
Ti ∼ Exponential(θ). Then the PDF is fi(t) = θe−θt, the CDF is Fi(t) = 1 − e−θt, so the
hazard function is

λi(t) =
θe−θt

1− (1− e−θt)
= θ.

In this case, the hazard function is constant in time (which is a special property of the
exponential distribution). Intuitively, this means that assuming the remission has lasted
until time t, the probability of the recurrence occurring in the next instant of time is the
same for every t and is determined only by θ. The parameter θ governs how quickly the
exponential distribution decays—the larger the value of θ, the faster the rate of decay, and
the more likely it is that recurrence of the cancer will occur at any next instant of time.

Cox’s proportional hazards model does not assume that the distribution of Ti is
exponential, or that it follows any particular parameteric form. Instead, it models the
hazard function for Ti as

λi(t) = λ0(t) exp(β1xi1 + . . .+ βpxip).
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The regression coefficients β1, . . . , βp are unknown parameters determining the effects of the
covariates on the remission length Ti, and λ0(t) is a completely unknown baseline hazard
function. In this model, λ0(t) controls the shape of the hazard function over time for all
patients, and the factor exp(β1xi1 + . . . + βpxip) controls the scale of the hazard function
for each patient i. Thus the model asserts that for any two patients i and j, their hazard
functions have the same shape and differ only in scale, so that the ratio of their hazard
functions λi(t)/λj(t) is constant over time (hence the name “proportional” hazards). The
model posits that this scale ratio is determined by a linear combination of the differences of
the patients’ covariates.

In the clinical trial, the remission for a patient i may last longer than the duration
for which the patient participates in the trial. In this case, we do not observe their true
remission length Ti (which can take the value ∞ if the cancer never returns), but instead
we only observe that Ti > li where li is the length of time for which the patient is in the
trial. This type of observation is called right-censored. The method of inference developed
below for the proportional hazards model will naturally handle data in which some of the
observations are right-censored. We treat li as a fixed and known constant for every patient,
so that we either observe a value of Ti that is at most li, or we observe that Ti > li. We
will make an important assumption that Ti (the true remission length) does not depend on
li (the right-censoring time).

The proportional hazards model may be used to model the time-to-onset of any event
pertaining to an individual in terms of observed covariates for that individual; example
applications include medical trials as above, as well as industrial reliability experiments that
model the time-to-failures of devices. According to a 2014 list in the scientific journal Nature,
the 1972 paper by David Cox which introduced this model is the 2nd most cited paper in
statistics and the 24th most cited paper in all of science.

28.2 Statistical inference

In many applications, the regression coefficients β1, . . . , βp are of greater interest than the
baseline hazard function λ0(t). If the first covariate xi1 corresponds to an indicator variable
representing assignment to the treatment group (drug) or the control group (placebo), then
the coefficient β1 represents the log-hazards-ratio between the two groups after controlling
for the other covariates xi2, . . . , xip. We will discuss inference procedures for the following
tasks:

• Estimate β1, . . . , βp.

• Test whether β1 = 0.

Perhaps surprisingly, it is possible to perform these inference tasks without any knowledge
of, and without any assumptions regarding, the baseline hazard function λ0(t).

In previous models, we performed inference by writing down the likelihood of the model
parameters. Inference in the proportional hazards model will be slightly different from these
previous examples, because the baseline hazard function λ0(t) is completely unknown, and
the likelihood function and MLEs for β1, . . . , βp would depend on λ0(t). If λ0(t) were modeled
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parametrically using a small number of additional parameters, then we may include these
as parameters of the model and fit the entire model by computing the joint MLEs of these
additional parameters and β1, . . . , βp. However, without parametric modeling assumptions
on λ0(t), in this course we have not discussed procedures for how to estimate an entire
unknown function λ0(t).

We will circumvent this problem by conditioning on the set of all distinct observed re-
currence times t(1) < t(2) < . . . < t(m) across all patients. (This idea is quite similar to how
we conditioned on the set of all distinct observed values in permutation two-sample tests,
to address the problem of an unknown common distribution function F = G under the null
hypothesis.) Since we are modeling Ti as continuous random variables, we may assume that
each observed recurrence time t(k) corresponds to only one patient (i.e. there are no ties in
recurrence times), so m is just the total number of non-right-censored observations. For each
t(k), the risk set R(k) immediately before time t(k) is the set of patients who have not yet
left the study (been right-censored) and are still in remission—this represents the candidate
set of patients for which we may have observed a recurrence at time t(k). Conditional on the
fact that some patient in this risk set R(k) has a recurrence at time t(k), the probability that
it is a particular patient Ik ∈ R(k) is

λIk(t(k))∑
i∈R(k)

λi(t(k))

(the ratio of the “instantaneous rate” of recurrence for patient Ik to the sum of the rates for
all candidate patients). Under the proportional hazards model, this is

λ0(t(k)) exp(β1xIk1 + . . .+ βpxIkp)∑
i∈R(k)

λ0(t(k)) exp(β1xi1 + . . .+ βpxip)
.

Importantly, the factor λ0(t(k)) cancels from the numerator and denominator of this expres-
sion, yielding a quantity that does not depend on the baseline hazard function λ0(t). Taking
a product of the above expression over all observed recurrence times yields

plik(β1, . . . , βp) =
m∏
k=1

exp(β1xIk1 + . . .+ βpxIkp)∑
i∈R(k)

exp(β1xi1 + . . .+ βpxip)
.

This quantity is called the partial likelihood function of β1, . . . , βp. Intuitively, it captures
all of the information contained by the observations that at each time t(k), the particular
recurrence was for patient Ik as opposed to the other patients for which we could have
observed a recurrence at that time. We may perform likelihood-based inference using this
partial likelihood in place of the usual likelihood function.

We may estimate β1, . . . , βp by maximizing the partial likelihood over these parameters.
As with usual MLE calculations, it is computationally convenient to first take a logarithm,
so we consider the log-partial likelihood

l(β1, . . . , βp) =
m∑
k=1

β1xIk1 + . . .+ βpxIkp − log
∑
i∈R(k)

exp(β1xi1 + . . .+ βpxip)

 .
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We may maximize this quantity by setting its derivative with respect to each β1, . . . , βp equal
to 0:

0 =
∂l

∂βj
=

m∑
k=1

(
xIkj −

∑
i∈R(k)

xij exp(β1xi1 + . . .+ βpxip)∑
i∈R(k)

exp(β1xi1 + . . .+ βpxip)

)
.

Solving numerically this system of p equations in p unknowns β1, . . . , βp yields the maximum

partial-likelihood estimates β̂1, . . . , β̂p.
The asymptotic theory for the maximum partial-likelihood estimate is analogous to that

of the MLE in usual parametric models (although the mathematical derivation of this theory
requires more advanced probabilistic tools that we did not cover in this course). In particular,
the usual generalized likelihood ratio test applies: To test H0 : β1 = 0, we may compute
the maximum partial likelihood estimates β̂2,0, . . . , β̂p,0 in this sub-model, using the same
procedure as above with the first covariate removed. The test statistic

−2 log Λ = −2 log
plik(0, β̂2,0, . . . , β̂p,0)

plik(β̂1, . . . , β̂p)

is, under mild regularity conditions, distributed as χ2
1 in the limit of large n, and an asymp-

totic level-α test would reject H0 when −2 log Λ exceeds the upper-α point χ2
1(α).
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