
STATS 200: Introduction to Statistical Inference
Lecture 29: Course review



Course review

We started in Lecture 1 with a fundamental assumption:

Data is a realization of a random process.

The goal throughout this course has been to use the observed data
to draw inferences about the underlying process or probability
distribution.

We discussed:

I Hypothesis testing—deciding whether a particular “null
hypothesis” about the underlying distribution is true or false

I Estimation—fitting a parametric model to this distribution
and/or estimating a quantity related to the parameters of this
model

I Standard errors and confidence intervals—quantifying the
uncertainty of these estimates
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Hypothesis testing

Goal: Accept or reject a null hypothesis H0 based on the value of
an observed test statistic T .

Question #1: How to choose a test statistic T?

Question #2: How to decide whether H0 is true/false based on T?

In a simple-vs-simple testing problem, there is a “best” answer to
Question #1, which is the likelihood ratio statistic

L(X1, . . . ,Xn) =
f0(X1, . . . ,Xn)

f1(X1, . . . ,Xn)
.

We can equivalently use any monotonic 1-to-1 transformation of
this statistic, which is simpler to understand in many examples
(e.g. the total count for Bernoulli coin flips).
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Hypothesis testing

In problems with composite alternatives, there is oftentimes not a
single most powerful test against all of the alternative distributions.
We instead discussed popular choices of T for several examples:

I Testing goodness of fit: Histogram methods (Pearson’s
chi-squared statistic), QQ-plot methods (one-sample
Kolmogorov-Smirnov statistic)

I Testing if a distribution is centered at 0: One-sample
t-statistic, signed-rank statistic, sign statistic

I Testing if two samples have the same distribution or mean:
Two-sample t-statistic, rank-sum statistic

I Testing if the parameters of a model satisfy additional
constraints (i.e. belong to a sub-model): Generalized
likelihood ratio statistic
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Hypothesis testing

Question #2: How to decide whether H0 is true/false based on T?

We adopted the frequentist significance testing framework: Control
the probability of type I error (falsely rejecting H0) at a target level
α, by considering the distribution of T if H0 were true.

To do this for each test, we either derived the null distribution of
T exactly (e.g. t-test), appealed to asymptotic approximations
(e.g. the χ2 distribution for the GLRT), or used computer
simulation (e.g. permutation two-sample tests).
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Estimation

Goal: Fit a parametric probability model to the observed data. For
IID data X1, . . . ,Xn ∼ f (x |θ), we discussed three methods:

I Method of moments: Equate the sample mean of Xi , X
2
i , etc.

to the theoretical mean of X , X 2, etc., and solve for θ

I Maximum likelihood: Pick θ to maximize
∏n

i=1 f (Xi |θ), or
equivalently

∑n
i=1 log f (Xi |θ)

I Bayesian inference: Postulate a prior distribution fΘ(θ) for θ,
compute the posterior

fΘ|X (θ|X1, . . . ,Xn) ∝ fΘ(θ)
n∏

i=1

f (Xi |θ),

and estimate θ by e.g. the posterior mean

We illustrated how the method of maximum likelihood generalizes
to regression models with covariates, where the data Y1, . . . ,Yn

are independent but not identically distributed.
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Estimation

We discussed the accuracy of estimators in terms of several finite-n
properties:

I The bias Eθ[θ̂]− θ
I The variance Varθ[θ̂]

I The MSE Eθ[(θ̂ − θ)2] = bias2 + variance

We also discussed asymptotic properties, as n→∞ and when the
true parameter is θ:

I Consistency: θ̂ → θ in probability

I Asymptotic normality:
√
n(θ̂ − θ)→ N (0, v(θ)) in

distribution for some variance v(θ)

I Asymptotic efficiency: θ̂ is asymptotically normal, and the
limiting variance is v(θ) = I (θ)−1, where I (θ) is the Fisher
information (of a single observation)
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Estimation

The definition of asymptotic efficiency was motivated by the
Cramer-Rao lower bound: Under mild smoothness conditions, for
any unbiased estimator θ̂ of θ, its variance is at least 1

n I (θ)−1.

A major result was that the MLE is asymptotically efficient:

√
n(θ̂ − θ)→ N (0, I (θ)−1)

We showed informally that Bayes estimators, asymptotically for
large n, approach the MLE—an implication is that Bayes
estimators are usually also asymptotically efficient.

On the other hand, method-of-moments estimators are oftentimes
not asymptotically efficient and have a larger mean-squared error
than the other two procedures for large n.
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Standard errors and confidence intervals

We discussed standard error estimates and confidence intervals
both when the model is correctly specified and when it is not.

In a correctly specified model, we can derive the variance v(θ) of
the estimate θ̂ in terms of the true parameter θ, and estimate the

standard error by the plugin estimate
√

v(θ̂).

For the MLE, asymptotic efficiency implies that v(θ) ≈ 1
n I (θ)−1 for

large n. In the setting of non-IID data Y1, . . . ,Yn in regression
models, we used the Fisher information of all n samples, IY(θ)−1,
in place of 1

n I (θ)−1.

For other estimators, we can sometimes derive v(θ) directly from
the form of θ̂, perhaps using asymptotic approximations like the
CLT and delta method.
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Standard errors and confidence intervals

In an incorrectly specified model, we studied the behavior of the
MLE θ̂ and interpreted the parameter θ that it tries to estimate as
the probability distribution in the model “closest in KL-divergence”
to the true distribution of data.

We derived a more general formula for the variance of θ̂, and
showed how this variance may be estimated by a “sandwich”
estimator.

Alternatively, we discussed the nonparametric bootstrap as a
simulation-based approach for estimating the standard error that is
also robust to model misspecification.



Standard errors and confidence intervals

To estimate a function g(θ), we may use the plugin estimate g(θ̂).

I If θ̂ is asymptotically normal, then g(θ̂) is usually also
asymptotically normal, and its asymptotic variance may be
derived using the delta method.

I If θ̂ is asymptotically efficient (e.g. the MLE), then g(θ̂) is
also asymptotically efficient for g(θ).

For any quantity θ, an approximate level 100(1− α)% confidence
interval for θ may be obtained from any asymptotically normal
estimator θ̂ and an estimate ŝe of its standard error:

θ̂ ± z(α/2)ŝe

Most confidence intervals that we constructed in this class were of
this form. (The accuracy of such intervals should be checked by
simulation if n is small.)
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Final exam

I You are allowed one 8.5× 11 inch “cheat sheet”, front and
back. No other outside material is permitted.

I The exam will provide relevant formulas (like the PDFs/PMFs
of common distributions), as was done on the midterm.

I Some material is from before the midterm, but the focus is on
Units 2 and 3.

I The exam will test conceptual understanding and problem
solving. You won’t be asked to reproduce detailed
mathematical proofs.

I We were informal in our discussion of regularity conditions
required for asymptotic efficiency of the MLE, asymptotic χ2

distribution of the GLRT statistic −2 log Λ, etc. For
parametric models having differentiable likelihood function
and common support, you don’t need to check regularity
conditions when applying these results.



One last example: Beyond the MLE

We live in a time when there is a convergence of ideas and
interchange of tools across quantitative disciplines. There is a rich
interplay between statistical inference and optimization,
algorithms, machine learning, and information theory.

Here is one last example which illustrates how the idea of the
MLE, in a seemingly simple problem, connects to interesting
questions in a variety of other fields of study.



One last example: Beyond the MLE

I n people, belonging to two distinct communities of equal size
n/2, are connected in a social network.

I Every pair of people is connected (independently) with
probability p if they are in the same community, and with
probability q if they are in different communities, where q < p.

I We can see the network of connections, but we cannot see
which person belongs to which community.

Question: Suppose (for simplicity) that we know the values p and
q. How can we infer who belongs to which community?



One last example: Beyond the MLE

Let S ⊂ {1, . . . , n} denote community 1, and Sc denote
community 2.

Let Same be the set of pairs {i , j} such that i , j ∈ S or i , j ∈ Sc ,
and let Different be the set of pairs {i , j} such that one of i , j
belongs to S and the other to Sc .

Our observed data are the connections in this network:

Aij =

{
1 if {i , j} are connected in the network

0 otherwise

Under our model, Aij are independent Bernoulli random variables
with Aij ∼ Bernoulli(p) if {i , j} ∈ Same and Aij ∼ Bernoulli(q) if
{i , j} ∈ Different.
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One last example: Beyond the MLE

The likelihood function is

lik(S) =
∏

{i ,j}∈Same

pAij (1− p)1−Aij
∏

{i ,j}∈Different

qAij (1− q)1−Aij

=
∏

{i ,j}∈Same

(1− p)

(
p

1− p

)Aij ∏
{i ,j}∈Different

(1− q)

(
q

1− q

)Aij

Each observed connection (where Aij = 1) contributes a factor of
p/(1− p) to the likelihood if {i , j} ∈ Same, and a factor of
q/(1− q) if {i , j} ∈ Different.

Since p > q, the MLE Ŝ is given by the partition of the people into
two communities that minimizes the number of observed
connections between communities (or, equivalently, maximizes the
number of connections within communities).
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One last example: Beyond the MLE

More formally, the MLE Ŝ solves the optimization problem

minimize
∑
i∈S

∑
j∈Sc

Aij

subject to |S | = |Sc | = n/2

This is a well-known problem in computer science, called the
minimum graph bisection problem.

Unfortunately, this problem is known to be NP-complete—it is
widely believed that no computationally efficient computer
algorithm can compute this MLE (for all possible realizations of
the network).
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One last example: Beyond the MLE

This leads to a number of interesting questions:

I Can we approximately solve this optimization problem, and
prove that our answer is not too far off?

I Are there other algorithms (not directly based on this
optimization) that can yield a good estimate of S?

I What is a lower bound for the error (expected fraction of
people assigned to the incorrect community) achievable by
any estimator?

I How robust are our algorithms to the modeling assumptions,
and how well do they generalize to settings with more than
two communities?

These questions have attracted the attention of people working in
statistics, mathematics, computer science, statistical physics, and
optimization, and they remain an active area of research today.


